These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 9329079)
1. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Rosenzweig AC; Brandstetter H; Whittington DA; Nordlund P; Lippard SJ; Frederick CA Proteins; 1997 Oct; 29(2):141-52. PubMed ID: 9329079 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Rosenzweig AC; Frederick CA; Lippard SJ; Nordlund P Nature; 1993 Dec; 366(6455):537-43. PubMed ID: 8255292 [TBL] [Abstract][Full Text] [Related]
3. Product bound structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): protein motion in the alpha-subunit. Sazinsky MH; Lippard SJ J Am Chem Soc; 2005 Apr; 127(16):5814-25. PubMed ID: 15839679 [TBL] [Abstract][Full Text] [Related]
4. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Davydov R; Valentine AM; Komar-Panicucci S; Hoffman BM; Lippard SJ Biochemistry; 1999 Mar; 38(13):4188-97. PubMed ID: 10194335 [TBL] [Abstract][Full Text] [Related]
5. Preparation and X-ray structures of metal-free, dicobalt and dimanganese forms of soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath). Sazinsky MH; Merkx M; Cadieux E; Tang S; Lippard SJ Biochemistry; 2004 Dec; 43(51):16263-76. PubMed ID: 15610020 [TBL] [Abstract][Full Text] [Related]
6. The C-terminal aqueous-exposed domain of the 45 kDa subunit of the particulate methane monooxygenase in Methylococcus capsulatus (Bath) is a Cu(I) sponge. Yu SS; Ji CZ; Wu YP; Lee TL; Lai CH; Lin SC; Yang ZL; Wang VC; Chen KH; Chan SI Biochemistry; 2007 Dec; 46(48):13762-74. PubMed ID: 17985930 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. Whittington DA; Lippard SJ J Am Chem Soc; 2001 Feb; 123(5):827-38. PubMed ID: 11456616 [TBL] [Abstract][Full Text] [Related]
8. Reactions of nitric oxide with the reduced non-heme diiron center of the soluble methane monooxygenase hydroxylase. Coufal DE; Tavares P; Pereira AS; Hyunh BH; Lippard SJ Biochemistry; 1999 Apr; 38(14):4504-13. PubMed ID: 10194372 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Elango N; Radhakrishnan R; Froland WA; Wallar BJ; Earhart CA; Lipscomb JD; Ohlendorf DH Protein Sci; 1997 Mar; 6(3):556-68. PubMed ID: 9070438 [TBL] [Abstract][Full Text] [Related]
10. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Jun; 2(6):409-18. PubMed ID: 9383443 [TBL] [Abstract][Full Text] [Related]
11. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Sep; 2(9):409-18. PubMed ID: 9432288 [TBL] [Abstract][Full Text] [Related]
12. Determination by X-ray absorption spectroscopy of the Fe-Fe separation in the oxidized form of the hydroxylase of methane monooxygenase alone and in the presence of MMOD. Rudd DJ; Sazinsky MH; Merkx M; Lippard SJ; Hedman B; Hodgson KO Inorg Chem; 2004 Jul; 43(15):4579-89. PubMed ID: 15257585 [TBL] [Abstract][Full Text] [Related]
13. Crystallization and preliminary X-ray analysis of the methane monooxygenase hydroxylase protein from Methylococcus capsulatus (Bath). Rosenzweig AC; Frederick CA; Lippard SJ J Mol Biol; 1992 Sep; 227(2):583-5. PubMed ID: 1404375 [TBL] [Abstract][Full Text] [Related]
14. Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). Gassner GT; Lippard SJ Biochemistry; 1999 Sep; 38(39):12768-85. PubMed ID: 10504247 [TBL] [Abstract][Full Text] [Related]
15. Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath). Kitmitto A; Myronova N; Basu P; Dalton H Biochemistry; 2005 Aug; 44(33):10954-65. PubMed ID: 16101279 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Lieberman RL; Rosenzweig AC Nature; 2005 Mar; 434(7030):177-82. PubMed ID: 15674245 [TBL] [Abstract][Full Text] [Related]
18. Global conformational changes control the reactivity of methane monooxygenase. Gallagher SC; Callaghan AJ; Zhao J; Dalton H; Trewhella J Biochemistry; 1999 May; 38(21):6752-60. PubMed ID: 10346895 [TBL] [Abstract][Full Text] [Related]
19. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. Whittington DA; Rosenzweig AC; Frederick CA; Lippard SJ Biochemistry; 2001 Mar; 40(12):3476-82. PubMed ID: 11297413 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures and functional studies of T4moD, the toluene 4-monooxygenase catalytic effector protein. Lountos GT; Mitchell KH; Studts JM; Fox BG; Orville AM Biochemistry; 2005 May; 44(19):7131-42. PubMed ID: 15882052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]