BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9330224)

  • 1. Preformed GroES oligomers are not required as functional cochaperonins.
    Seale JW; Chirgwin JM; Demeler B; Horowitz PM
    J Protein Chem; 1997 Oct; 16(7):661-8. PubMed ID: 9330224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible oligomerization and denaturation of the chaperonin GroES.
    Seale JW; Gorovits BM; Ybarra J; Horowitz PM
    Biochemistry; 1996 Apr; 35(13):4079-83. PubMed ID: 8672442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of Chromatium vinosum GroEL and GroES proteins overexpressed in Escherichia coli cells lacking the endogenous groESL operon.
    Dionisi HM; Viale AM
    Protein Expr Purif; 1998 Nov; 14(2):275-82. PubMed ID: 9790891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
    Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
    Gorovits BM; Ybarra J; Seale JW; Horowitz PM
    J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese.
    Mendoza JA; Rogers E; Lorimer GH; Horowitz PM
    J Biol Chem; 1991 Jul; 266(20):13044-9. PubMed ID: 1677004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomer-heptamer equilibrium of the Escherichia coli chaperonin GroES.
    Zondlo J; Fisher KE; Lin Z; Ducote KR; Eisenstein E
    Biochemistry; 1995 Aug; 34(33):10334-9. PubMed ID: 7654686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle.
    Miyazaki T; Yoshimi T; Furutsu Y; Hongo K; Mizobata T; Kanemori M; Kawata Y
    J Biol Chem; 2002 Dec; 277(52):50621-8. PubMed ID: 12377767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminal sequence of the chaperonin GroES is required for oligomerization.
    Seale JW; Horowitz PM
    J Biol Chem; 1995 Dec; 270(51):30268-70. PubMed ID: 8530444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the amino terminal domain in GroES oligomerization.
    Llorca O; Schneider K; Carrascosa JL; Méndez E; Valpuesta JM
    Biochim Biophys Acta; 1997 Jan; 1337(1):47-56. PubMed ID: 9003436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 16. Stimulating the substrate folding activity of a single ring GroEL variant by modulating the cochaperonin GroES.
    Illingworth M; Ramsey A; Zheng Z; Chen L
    J Biol Chem; 2011 Sep; 286(35):30401-30408. PubMed ID: 21757689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stability of the molecular chaperonin cpn60 is affected by site-directed replacement of cysteine 518.
    Luo GX; Horowitz PM
    J Biol Chem; 1994 Dec; 269(51):32151-4. PubMed ID: 7798211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
    Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB
    EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding.
    Hayer-Hartl MK; Martin J; Hartl FU
    Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.