BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9330542)

  • 1. A technique for measuring contact force distribution in minimally invasive surgical procedures.
    Brett PN; Stone RS
    Proc Inst Mech Eng H; 1997; 211(4):309-16. PubMed ID: 9330542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flexible digit with tactile feedback for invasive clinical applications.
    Ma X; Brett PN; Wright MT; Griffiths MV
    Proc Inst Mech Eng H; 2004; 218(3):151-7. PubMed ID: 15239565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminating contact in lumen with a moving flexible digit using fibre Bragg grating sensing elements.
    Tam B; Ma X; Webb DJ; Holding DJ; Brett PN
    Proc Inst Mech Eng H; 2010; 224(6):765-74. PubMed ID: 20608493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions.
    Hamed AM; Tse ZT; Young I; Davies BL; Lampérth M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):99-110. PubMed ID: 19239071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery--experimental performance evaluation.
    Rosen J; Hannaford B; MacFarlane MP; Sinanan MN
    IEEE Trans Biomed Eng; 1999 Oct; 46(10):1212-21. PubMed ID: 10513126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptics in minimally invasive surgical simulation and training.
    Basdogan C; De S; Kim J; Muniyandi M; Kim H; Srinivasan MA
    IEEE Comput Graph Appl; 2004; 24(2):56-64. PubMed ID: 15387229
    [No Abstract]   [Full Text] [Related]  

  • 9. An indentation depth-force sensing wheeled probe for abnormality identification during minimally invasive surgery.
    Liu H; Puangmali P; Zbyszewski D; Elhage O; Dasgupta P; Dai JS; Seneviratne L; Althoefer K
    Proc Inst Mech Eng H; 2010; 224(6):751-63. PubMed ID: 20608492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings.
    Shimachi S; Kameyama F; Hakozaki Y; Fujiwara Y
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):97-104. PubMed ID: 16685948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Network-Based Minimally Invasive VR Surgery Simulator.
    Tagawa K; Tanaka HT; Kurumi Y; Komori M; Morikawa S
    Stud Health Technol Inform; 2016; 220():403-6. PubMed ID: 27046613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile optical sensor for use in minimal invasive surgery.
    Fischer H; Trapp R
    Stud Health Technol Inform; 1996; 29():623-9. PubMed ID: 10172852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic surgery systems.
    Dondelinger R
    Biomed Instrum Technol; 2014; 48(1):55-9. PubMed ID: 24548037
    [No Abstract]   [Full Text] [Related]  

  • 16. Informatic surgery: the union of surgeon and machine.
    Lang MJ; Sutherland GR
    World Neurosurg; 2010 Jul; 74(1):118-20. PubMed ID: 21300000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness and complexity of a minimally invasive vascular intervention simulation system.
    Alderliesten T; Konings MK; Niessen WJ
    Med Phys; 2006 Dec; 33(12):4758-69. PubMed ID: 17278829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An autoclavable wireless palpation instrument for minimally invasive surgery.
    Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers.
    Shurgalin M; Anastassiou C
    Biomed Instrum Technol; 2008; 42(4):318-25. PubMed ID: 18662072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.