BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 9330659)

  • 1. Bioproduction of indoleacetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum DC.
    Bhattacharyya RN; Basu PS
    Acta Microbiol Immunol Hung; 1997; 44(2):109-18. PubMed ID: 9330659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth behaviour and indole acetic acid (IAA) production by a Rhizobium isolated from root nodules of Alysicarpus vaginalis DC.
    Bhattacharyya RN; Pati BR
    Acta Microbiol Immunol Hung; 2000; 47(1):41-51. PubMed ID: 10735189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth behaviour and bioproduction of indole acetic acid by a Rhizobium sp. isolated from root nodules of a leguminous tree Dalbergia lanceolaria.
    Ghosh AC; Basu PS
    Indian J Exp Biol; 2002 Jul; 40(7):796-801. PubMed ID: 12597549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan.
    Datta C; Basu PS
    Microbiol Res; 2000 Jul; 155(2):123-7. PubMed ID: 10950195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo.
    Ghosh S; Basu PS
    Microbiol Res; 2006; 161(4):362-6. PubMed ID: 16473504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids.
    Mandal SM; Mandal M; Das AK; Pati BR; Ghosh AK
    Arch Microbiol; 2009 Apr; 191(4):389-93. PubMed ID: 19151966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of 3-indolylacetic acid in root nodules and culture by a Rhizobium species isolated from root nodules of the leguminous pulse Phaseolus mungo.
    Ghosh S; Sengupta C; Maiti TK; Basu PS
    Folia Microbiol (Praha); 2008; 53(4):351-5. PubMed ID: 18759120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512.
    Spaepen S; Das F; Luyten E; Michiels J; Vanderleyden J
    FEMS Microbiol Lett; 2009 Feb; 291(2):195-200. PubMed ID: 19087205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234.
    Theunis M; Kobayashi H; Broughton WJ; Prinsen E
    Mol Plant Microbe Interact; 2004 Oct; 17(10):1153-61. PubMed ID: 15497408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergism of VAM and Rhizobium on production and metabolism of IAA in roots and root nodules of Vigna mungo.
    Chakrabarti J; Chatterjee S; Ghosh S; Chatterjee NC; Dutta S
    Curr Microbiol; 2010 Sep; 61(3):203-9. PubMed ID: 20306316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular polysaccharide production by Azorhizobium caulinodans from stem nodules of leguminous emergent hydrophyte Aeschynomene aspera.
    Ghosh AC; Basu PS
    Indian J Exp Biol; 2001 Feb; 39(2):155-9. PubMed ID: 11480212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Auxin production by bacteria associated with orchid roots].
    Tsavkelova EA; Cherdyntseva TA; Netrusov AI
    Mikrobiologiia; 2005; 74(1):55-62. PubMed ID: 15835779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indole acetic acid and its metabolism in root nodules of a monocotyledonous tree Roystonea regia.
    Basu PS; Ghosh AC
    Curr Microbiol; 1998 Aug; 37(2):137-40. PubMed ID: 9662615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development.
    Camerini S; Senatore B; Lonardo E; Imperlini E; Bianco C; Moschetti G; Rotino GL; Campion B; Defez R
    Arch Microbiol; 2008 Jul; 190(1):67-77. PubMed ID: 18415080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siderophore activity in Rhizobium species isolated from different legumes.
    Deryło M; Choma A; Puchalski B; Suchanek W
    Acta Biochim Pol; 1994; 41(1):7-11. PubMed ID: 8030377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin.
    Tsavkelova EA; Cherdyntseva TA; Klimova SY; Shestakov AI; Botina SG; Netrusov AI
    Arch Microbiol; 2007 Dec; 188(6):655-64. PubMed ID: 17687544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of L-tryptophane on yield of field bean and activity of soil microorganisms.
    Kucharski J; Nowak G
    Acta Microbiol Pol; 1994; 43(3-4):381-8. PubMed ID: 7740988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coevolution in Rhizobium-legume symbiosis?
    Martínez-Romero E
    DNA Cell Biol; 2009 Aug; 28(8):361-70. PubMed ID: 19485766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium.
    Imada EL; Rolla Dos Santos AAP; Oliveira ALM; Hungria M; Rodrigues EP
    Res Microbiol; 2017 Apr; 168(3):283-292. PubMed ID: 27845247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.
    Fauvart M; Michiels J
    FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.