These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9331070)

  • 41. Theoretical proposal: allele dosage of MAP2K4/MKK4 could rationalize frequent 17p loss in diverse human cancers.
    Cunningham SC; Gallmeier E; Hucl T; Dezentje DA; Abdelmohsen K; Gorospe M; Kern SE
    Cell Cycle; 2006 May; 5(10):1090-3. PubMed ID: 16721048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.
    Sithanandam G; Latif F; Duh FM; Bernal R; Smola U; Li H; Kuzmin I; Wixler V; Geil L; Shrestha S
    Mol Cell Biol; 1996 Mar; 16(3):868-76. PubMed ID: 8622688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human gastric cancer kinase profile and prognostic significance of MKK4 kinase.
    Wu CW; Li AF; Chi CW; Huang CL; Shen KH; Liu WY; Lin W
    Am J Pathol; 2000 Jun; 156(6):2007-15. PubMed ID: 10854223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orange is the new black: Kinases are the new master regulators of tumor suppression.
    An E; Brognard J
    IUBMB Life; 2019 Jun; 71(6):738-748. PubMed ID: 30548122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs.
    Marasa BS; Srikantan S; Masuda K; Abdelmohsen K; Kuwano Y; Yang X; Martindale JL; Rinker-Schaeffer CW; Gorospe M
    Sci Signal; 2009 Oct; 2(94):ra69. PubMed ID: 19861690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitogen-activated protein kinase and cytoskeleton in mitogenic signal transduction.
    Nishida E; Gotoh Y
    Int Rev Cytol; 1992; 138():211-38. PubMed ID: 1333452
    [No Abstract]   [Full Text] [Related]  

  • 47. Building on the foundation of daring hypotheses: using the MKK4 metastasis suppressor to develop models of dormancy and metastatic colonization.
    Knopeke MT; Ritschdorff ET; Clark R; Vander Griend DJ; Khan S; Thobe M; Shear JB; Rinker-Schaeffer CW
    FEBS Lett; 2011 Oct; 585(20):3159-65. PubMed ID: 21925502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emerging roles of DYRK2 in cancer.
    Tandon V; de la Vega L; Banerjee S
    J Biol Chem; 2021; 296():100233. PubMed ID: 33376136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of tyrosine kinases and MAP kinase in neutrophils stimulated by lipopolysaccharide.
    Suzuki N; Avdi N; Young SK; Worthen GS
    Chest; 1994 Mar; 105(3 Suppl):52S. PubMed ID: 8131612
    [No Abstract]   [Full Text] [Related]  

  • 50. Using MKK4's metastasis suppressor function to identify and dissect cancer cell-microenvironment interactions during metastatic colonization.
    Krishnan V; Stadick N; Clark R; Bainer R; Veneris JT; Khan S; Drew A; Rinker-Schaeffer C
    Cancer Metastasis Rev; 2012 Dec; 31(3-4):605-13. PubMed ID: 22706843
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MKK4 as oncogene or tumor suppressor: in cancer and senescence, the story's getting old.
    Cunningham SC; Gallmeier E; Kern SE
    Aging (Albany NY); 2010 Nov; 2(11):752-3. PubMed ID: 21084726
    [No Abstract]   [Full Text] [Related]  

  • 52. Signal transduction and growth control in normal and cancer cells.
    Pawson T; Hunter T
    Curr Opin Genet Dev; 1994 Feb; 4(1):1-4. PubMed ID: 8193529
    [No Abstract]   [Full Text] [Related]  

  • 53. The autoinhibited state of MKK4: Phosphorylation, putative dimerization and R134W mutant studied by molecular dynamics simulations.
    Shevchenko E; Poso A; Pantsar T
    Comput Struct Biotechnol J; 2020; 18():2687-2698. PubMed ID: 33101607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scaffold modified Vemurafenib analogues as highly selective mitogen activated protein kinase kinase 4 (MKK4) inhibitors.
    Juchum M; Pfaffenrot B; Klövekorn P; Selig R; Albrecht W; Zender L; Laufer SA
    Eur J Med Chem; 2022 Oct; 240():114584. PubMed ID: 35868124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular profiling of tyrosine kinases in normal and cancer cells.
    Kung HJ; Chen HC; Robinson D
    J Biomed Sci; 1998; 5(2):74-8. PubMed ID: 9662065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Janus-faced function of tumor suppressor genes as a new paradigm of cancer research--link between metabolic syndrome and carcinogenesis].
    Kawata S; Makino N
    Nihon Shokakibyo Gakkai Zasshi; 2006 Nov; 103(11):1215-22. PubMed ID: 17085901
    [No Abstract]   [Full Text] [Related]  

  • 57. From protein phosphorylation to gene expression profiles. Eighth colloquium on cellular signal transduction, 26 February 1999, Heidelberg, Germany.
    Marks F
    J Cancer Res Clin Oncol; 2000 Feb; 126(2):119-23. PubMed ID: 10664254
    [No Abstract]   [Full Text] [Related]  

  • 58. Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene.
    Su GH; Hilgers W; Shekher MC; Tang DJ; Yeo CJ; Hruban RH; Kern SE
    Cancer Res; 1998 Jun; 58(11):2339-42. PubMed ID: 9622070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DUX4 expression activates JNK and p38 MAP kinases in myoblasts.
    Brennan CM; Hill AS; St Andre M; Li X; Madeti V; Breitkopf S; Garren S; Xue L; Gilbert T; Hadjipanayis A; Monetti M; Emerson CP; Moccia R; Owens J; Christoforou N
    Dis Model Mech; 2022 Nov; 15(11):. PubMed ID: 36196640
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Martínez-Casillas KCE; Saucedo-Sariñana AM; Barros-Núñez P; Gallegos-Arreola MP; Pineda-Razo TD; Marín-Contreras ME; Flores-Martínez SE; Rosales-Reynoso MA
    Iran J Basic Med Sci; 2021 Aug; 24(8):1033-1040. PubMed ID: 34804420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.