These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 9331168)

  • 21. Early development and composition of the human primordial plexiform layer: An immunohistochemical study.
    Zecevic N; Milosevic A; Rakic S; Marín-Padilla M
    J Comp Neurol; 1999 Sep; 412(2):241-54. PubMed ID: 10441754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium-binding proteins in the periglomerular region of typical and typical olfactory glomeruli.
    Crespo C; Alonso JR; Briñón JG; Weruaga E; Porteros A; Arévalo R; Aijón J
    Brain Res; 1997 Jan; 745(1-2):293-302. PubMed ID: 9037421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MK801-induced caspase-3 in the postnatal brain: inverse relationship with calcium binding proteins.
    Lema Tomé CM; Bauer C; Nottingham C; Smith C; Blackstone K; Brown L; Hlavaty C; Nelson C; Daker R; Sola R; Miller R; Bryan R; Turner CP
    Neuroscience; 2006 Sep; 141(3):1351-63. PubMed ID: 16782280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in immunoreactivity to calcium-binding proteins in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation.
    Barbado MV; Briñón JG; Weruaga E; Porteros A; Arévalo R; Aijón J; Alonso JR
    Exp Neurol; 2002 Sep; 177(1):133-50. PubMed ID: 12429217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early olfactory enrichment and deprivation both decrease beta-adrenergic receptor density in the main olfactory bulb of the rat.
    Woo CC; Leon M
    J Comp Neurol; 1995 Oct; 360(4):634-42. PubMed ID: 8801255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical properties of type 1 and type 2 periglomerular cells in the mouse olfactory bulb are different from those in the rat olfactory bulb.
    Kosaka K; Kosaka T
    Brain Res; 2007 Sep; 1167():42-55. PubMed ID: 17662264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal subpopulations of developing rat hippocampus containing different calcium-binding proteins behave distinctively in trimethyltin-induced neurodegeneration.
    Geloso MC; Vinesi P; Michetti F
    Exp Neurol; 1998 Dec; 154(2):645-53. PubMed ID: 9878199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hippocalcin in the olfactory epithelium: a mediator of second messenger signaling.
    Mammen A; Simpson PJ; Nighorn A; Imanishi Y; Palczewski K; Ronnett GV; Moon C
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1131-9. PubMed ID: 15336960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium-binding proteins: differential expression in the rat olfactory cortex after neonatal olfactory bulbectomy.
    Lim JH; Brunjes PC
    J Neurobiol; 1999 May; 39(2):207-17. PubMed ID: 10235675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calmodulin, calbindin-D28k, calretinin and neurocalcin in rat olfactory bulb during postnatal development.
    Bastianelli E; Pochet R
    Brain Res Dev Brain Res; 1995 Jul; 87(2):224-7. PubMed ID: 7586506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-occurrence of calcium-binding proteins and calcium-permeable glutamate receptors in the primary gustatory nucleus of goldfish.
    Ikenaga T; Huesa G; Finger TE
    J Comp Neurol; 2006 Nov; 499(1):90-105. PubMed ID: 16958099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parvalbumin and calbindin immunoreactivity in the rat brain: a double-immunolabelling method.
    Schwab C; Brückner G; Härtig W
    Acta Histochem Suppl; 1992; 42():277-81. PubMed ID: 1584978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of somatostatin- and cholecystokinin-immunoreactive periglomerular cells in the rat olfactory bulb.
    Gutièrrez-Mecinas M; Crespo C; Blasco-Ibáñez JM; Gracia-Llanes FJ; Marqués-Marí AI; Martínez-Guijarro FJ
    J Comp Neurol; 2005 Sep; 489(4):467-79. PubMed ID: 16025459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of calcium-binding proteins in the proliferative zones around the corticostriatal junction of rabbits during pre- and postnatal development.
    Reblet C; Alejo A; Fuentes T; Pró-Sistiaga P; Mendizabal-Zubiaga J; Bueno-López JL
    Brain Res Bull; 2005 Sep; 66(4-6):461-4. PubMed ID: 16144632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Volumetric changes in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation.
    Barbado MV; Briñón JG; Weruaga E; Porteros A; Arévalo R; Aijón J; Alonso JR
    Exp Neurol; 2001 Oct; 171(2):379-90. PubMed ID: 11573990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Olfactory experience modulates Bcl-2 expression in the developing olfactory bulb.
    Najbauer J; Ibrahim E; Leon M
    Neuroreport; 1995 Dec; 7(1):197-200. PubMed ID: 8742450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurochemical compartmentalization of the globus pallidus in the rat: an immunocytochemical study of calcium-binding proteins.
    Rajakumar N; Rushlow W; Naus CC; Elisevich K; Flumerfelt BA
    J Comp Neurol; 1994 Aug; 346(3):337-48. PubMed ID: 7995854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemoarchitecture of the monotreme olfactory bulb.
    Ashwell KW
    Brain Behav Evol; 2006; 67(2):69-84. PubMed ID: 16244466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neonatal olfactory sensory deprivation decreases BDNF in the olfactory bulb of the rat.
    McLean JH; Darby-King A; Bonnell WS
    Brain Res Dev Brain Res; 2001 May; 128(1):17-24. PubMed ID: 11356258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experience-dependent modifications in MAP2 phosphorylation in rat olfactory bulb.
    Philpot BD; Lim JH; Halpain S; Brunjes PC
    J Neurosci; 1997 Dec; 17(24):9596-604. PubMed ID: 9391014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.