BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9331344)

  • 1. Introduction of a neurotrophin-3 transgene into muscle selectively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3.
    Wright DE; Zhou L; Kucera J; Snider WD
    Neuron; 1997 Sep; 19(3):503-17. PubMed ID: 9331344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of neurotrophin-3 in skeletal muscle alters normal and injury-induced limb control.
    Taylor MD; Vancura R; Williams JM; Riekhof JT; Taylor BK; Wright DE
    Somatosens Mot Res; 2001; 18(4):286-94. PubMed ID: 11794730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of developing group Ia afferents on neurotrophin-3.
    Kucera J; Fan G; Jaenisch R; Linnarsson S; Ernfors P
    J Comp Neurol; 1995 Dec; 363(2):307-20. PubMed ID: 8642077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle-derived neurotrophin-3 reduces injury-induced proprioceptive degeneration in neonatal mice.
    Wright DE; Williams JM; McDonald JT; Carlsten JA; Taylor MD
    J Neurobiol; 2002 Feb; 50(3):198-208. PubMed ID: 11810635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of fusimotor innervation correlates with group Ia afferents but is independent of neurotrophin-3.
    Ringstedt T; Copray S; Walro J; Kucera J
    Brain Res Dev Brain Res; 1998 Dec; 111(2):295-300. PubMed ID: 9838169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents.
    Patel TD; Kramer I; Kucera J; Niederkofler V; Jessell TM; Arber S; Snider WD
    Neuron; 2003 May; 38(3):403-16. PubMed ID: 12741988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of neurotrophins in the maintenance of the spinal cord motor neurons and the dorsal root ganglia proprioceptive sensory neurons.
    Stephens HE; Belliveau AC; Gupta JS; Mirkovic S; Kablar B
    Int J Dev Neurosci; 2005 Nov; 23(7):613-20. PubMed ID: 16183241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for p75 receptor in neurotrophin-3 functioning during the development of limb proprioception.
    Fan G; Jaenisch R; Kucera J
    Neuroscience; 1999 Apr; 90(1):259-68. PubMed ID: 10188952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proprioceptive afferents survive in the masseter muscle of trkC knockout mice.
    Matsuo S; Ichikawa H; Silos-Santiago I; Arends JJ; Henderson TA; Kiyomiya K; Kurebe M; Jacquin MF
    Neuroscience; 2000; 95(1):209-16. PubMed ID: 10619477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal regulation of limb proprioception by muscle-derived neurotrophin-3.
    Taylor MD; Vancura R; Patterson CL; Williams JM; Riekhof JT; Wright DE
    J Comp Neurol; 2001 Apr; 432(2):244-58. PubMed ID: 11241389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limb proprioceptive deficits without neuronal loss in transgenic mice overexpressing neurotrophin-3 in the developing nervous system.
    Ringstedt T; Kucera J; Lendahl U; Ernfors P; Ibáñez CF
    Development; 1997 Jul; 124(13):2603-13. PubMed ID: 9217002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotrophin-3 and trkC in muscle are non-essential for the development of mouse muscle spindles.
    Kucera J; Fan G; Walro J; Copray S; Tessarollo L; Jaenisch R
    Neuroreport; 1998 Mar; 9(5):905-9. PubMed ID: 9579688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents.
    Ernfors P; Lee KF; Kucera J; Jaenisch R
    Cell; 1994 May; 77(4):503-12. PubMed ID: 7514502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coculture of rat embryonic proprioceptive sensory neurons and myotubes.
    Copray S; Liem R; Mantingh-Otter IJ; Brouwer N
    Muscle Nerve; 1996 Nov; 19(11):1401-12. PubMed ID: 8874397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice.
    Ernfors P; Kucera J; Lee KF; Loring J; Jaenisch R
    Int J Dev Biol; 1995 Oct; 39(5):799-807. PubMed ID: 8645564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-independent specification of proprioceptive sensory neurons.
    Oakley RA; Karpinski BA
    Dev Biol; 2002 Sep; 249(2):255-69. PubMed ID: 12221005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotrophin-3 ameliorates sensory-motor deficits in Er81-deficient mice.
    Li LY; Wang Z; Sedý J; Quazi R; Walro JM; Frank E; Kucera J
    Dev Dyn; 2006 Nov; 235(11):3039-50. PubMed ID: 17013886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemoattractant role for NT-3 in proprioceptive axon guidance.
    Genç B; Ozdinler PH; Mendoza AE; Erzurumlu RS
    PLoS Biol; 2004 Dec; 2(12):e403. PubMed ID: 15550985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of muscle spindle innervation by neurotrophin-3 following nerve injury.
    Taylor MD; Holdeman AS; Weltmer SG; Ryals JM; Wright DE
    Exp Neurol; 2005 Jan; 191(1):211-22. PubMed ID: 15589528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis.
    Tourtellotte WG; Keller-Peck C; Milbrandt J; Kucera J
    Dev Biol; 2001 Apr; 232(2):388-99. PubMed ID: 11401400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.