These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9331395)

  • 1. Noninvasive measures of central and peripheral activation in human muscle fatigue.
    Kent-Braun JA
    Muscle Nerve Suppl; 1997; 5():S98-101. PubMed ID: 9331395
    [No Abstract]   [Full Text] [Related]  

  • 2. Combined effect of repetitive work and cold on muscle function and fatigue.
    Oksa J; Ducharme MB; Rintamäki H
    J Appl Physiol (1985); 2002 Jan; 92(1):354-61. PubMed ID: 11744678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular fatigue and aging: central and peripheral factors.
    Allman BL; Rice CL
    Muscle Nerve; 2002 Jun; 25(6):785-96. PubMed ID: 12115966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.
    Kalmar JM; Cafarelli E
    J Appl Physiol (1985); 2006 Jun; 100(6):1757-64. PubMed ID: 16424071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved tolerance of peripheral fatigue by the central nervous system after endurance training.
    Zghal F; Cottin F; Kenoun I; Rebaï H; Moalla W; Dogui M; Tabka Z; Martin V
    Eur J Appl Physiol; 2015 Jul; 115(7):1401-15. PubMed ID: 25681110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions.
    Noakes TD; St Clair Gibson A; Lambert EV
    Br J Sports Med; 2005 Feb; 39(2):120-4. PubMed ID: 15665213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive brain stimulation enhances sustained muscle contractions by reducing neuromuscular fatigue: implications for rehabilitation.
    Cunningham DA
    J Neurophysiol; 2017 Mar; 117(3):1215-1217. PubMed ID: 27440245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue induced changes in phasic muscle activation patterns for fast elbow flexion movements.
    Corcos DM; Jiang HY; Wilding J; Gottlieb GL
    Exp Brain Res; 2002 Jan; 142(1):1-12. PubMed ID: 11797079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The muscles work, but the brain gets tired].
    Secher NH; Quistorff B; Dalsgaard MK
    Ugeskr Laeger; 2006 Dec; 168(51):4503-6. PubMed ID: 17217876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining central activation failure and peripheral fatigue in the course of sustained maximal voluntary contractions: a model-based approach.
    Schillings ML; Stegeman DF; Zwarts MJ
    J Appl Physiol (1985); 2005 Jun; 98(6):2292-7. PubMed ID: 15705721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Vissing J
    J Appl Physiol (1985); 2006 Jun; 100(6):2101. PubMed ID: 16767813
    [No Abstract]   [Full Text] [Related]  

  • 12. Severe hypoxia affects exercise performance independently of afferent feedback and peripheral fatigue.
    Millet GY; Muthalib M; Jubeau M; Laursen PB; Nosaka K
    J Appl Physiol (1985); 2012 Apr; 112(8):1335-44. PubMed ID: 22323647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central and peripheral components of diaphragmatic fatigue during inspiratory resistive load in cats.
    Aleksandrova NP; Isaev GG
    Acta Physiol Scand; 1997 Nov; 161(3):355-60. PubMed ID: 9401588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue--from muscle to brain or vice versa?
    Meeusen R
    J Appl Physiol (1985); 2010 Feb; 108(2):459-60; author reply 469. PubMed ID: 20135762
    [No Abstract]   [Full Text] [Related]  

  • 15. Exercise-induced hyperammonemia: skeletal muscle ammonia metabolism and the peripheral and central effects.
    Graham TE
    Adv Exp Med Biol; 1994; 368():181-95. PubMed ID: 7741011
    [No Abstract]   [Full Text] [Related]  

  • 16. Measurement of human muscle fatigue.
    Vøllestad NK
    J Neurosci Methods; 1997 Jun; 74(2):219-27. PubMed ID: 9219890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort.
    Schillings ML; Hoefsloot W; Stegeman DF; Zwarts MJ
    Eur J Appl Physiol; 2003 Nov; 90(5-6):562-8. PubMed ID: 12905050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue.
    Westerblad H
    Med Sci Sports Exerc; 2016 Nov; 48(11):2339-2342. PubMed ID: 27755383
    [No Abstract]   [Full Text] [Related]  

  • 19. Neurobiology of muscle fatigue. Advances and issues.
    Gandevia SC; Enoka RM; McComas AJ; Stuart DG; Thomas CK
    Adv Exp Med Biol; 1995; 384():515-25. PubMed ID: 8585476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the actomyosin interaction during fatigue of skeletal muscle.
    Cooke R
    Muscle Nerve; 2007 Dec; 36(6):756-77. PubMed ID: 17823954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.