These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 933152)

  • 1. Modification of valinomycin-mediated bilayer membrane conductance by 4,5,6,7-tetrachloro-2-methylbenzimidazole.
    Kuo KH; Bruner LJ
    J Membr Biol; 1976 May; 26(4):385-403. PubMed ID: 933152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles.
    Kuo KH; Fukuto TR; Miller TA; Bruner LJ
    Biophys J; 1976 Feb; 16(2 Pt 1):143-50. PubMed ID: 1247644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of unstirred layers on the steady-state zero-current conductance of bilayer membranes mediated by neutral carriers of ions.
    Ciani S; Gambale F; Gliozzi A; Rolandi R
    J Membr Biol; 1975 Oct; 24(1):1-34. PubMed ID: 1195352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.
    Stark G; Ketterer B; Benz R; Läuger P
    Biophys J; 1971 Dec; 11(12):981-94. PubMed ID: 4332419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of ion transport through lipid bilayer-membranes mediated by peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro).
    Benz R; Gisin BF; Ting-Beall HP; Tosteson DC; Läuger P
    Biochim Biophys Acta; 1976 Dec; 455(3):665-84. PubMed ID: 999934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of ion transport in lipid membranes induced by lysine-valinomycin and derivatives.
    Stark G; Gisin BF
    Biophys Struct Mech; 1979 Dec; 6(1):39-56. PubMed ID: 44205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion transport mediated by the valinomycin analogue cyclo(L-Lac-L-Val-D-Pro-D-Val)3 in lipid bilayer membranes.
    Latorre R; Donovan JJ; Koroshetz W; Tosteson DC; Gisin BF
    J Gen Physiol; 1981 Apr; 77(4):387-417. PubMed ID: 7241088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers.
    Feldberg SW; Kissel G
    J Membr Biol; 1975; 20(3-4):269-300. PubMed ID: 1173599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hydrostatic pressure on lipid bilayer membranes. II. Activation and reaction volumes of carrier mediated ion transport.
    Benz R; Conti F
    Biophys J; 1986 Jul; 50(1):99-107. PubMed ID: 3730510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):441-66. PubMed ID: 263687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical and electrical studies on dansyllysine-valinomycin in thin lipid membranes.
    Pohl GW; Knoll W; Gisin BF; Stark G
    Biophys Struct Mech; 1976 Aug; 2(2):119-37. PubMed ID: 963233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phloretin-induced changes in ion transport across lipid bilayer membranes.
    Melnik E; Latorre R; Hall JE; Tosteson DC
    J Gen Physiol; 1977 Feb; 69(2):243-57. PubMed ID: 576427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent activation volumes of hydrophobic ions and carriers in planar lipid bilayers.
    Moronne M; Macey RI
    J Membr Biol; 1985; 84(3):221-7. PubMed ID: 4032455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.
    Mueller P
    Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin.
    Ginsburg H; Stark G
    Biochim Biophys Acta; 1976 Dec; 455(3):685-700. PubMed ID: 1036715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupler antagonism of valinomycin induced bilayer membrane conductance.
    Kuo KH; Bruner LJ
    Biochem Biophys Res Commun; 1973 Jun; 52(3):1079-85. PubMed ID: 4575781
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy.
    Shlyonsky VG; Markin VS; Andreeva I; Pedersen SE; Simon SA; Benos DJ; Ismailov II
    Biochim Biophys Acta; 2006 Nov; 1758(11):1723-31. PubMed ID: 17069752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some effects of trinitrocresolate and valinomycin on Na and K transport across thin lipid bilayer membranes: a steady-state analysis with simultaneous tracer and electrical measurements.
    Ginsburg H; Tosteson MT; Tosteson DC
    J Membr Biol; 1978 Sep; 42(2):153-68. PubMed ID: 702517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of surface charge density on valinomycin-K+ complex formation in model membranes.
    Caspers J; Landuyt-Caufriez M; Deleers M; Ruysschaert JM
    Biochim Biophys Acta; 1979 Jun; 554(1):23-38. PubMed ID: 582285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K+-valinomycin and chloride conductance of the human red cell membrane. Influence of the membrane protonophore carbonylcyanide m-chlorophenylhydrazone.
    Bennekou P
    Biochim Biophys Acta; 1984 Sep; 776(1):1-9. PubMed ID: 6477898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.