These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 9331739)
1. Modification of sucrose dependent cell adherence by deletion and reintroduction of the gtf genes in Streptococcus mutans. Tamesada M; Kawabata S; Bian Z; Fujiwara T; Kimura S; Hamada S Adv Exp Med Biol; 1997; 418():665-8. PubMed ID: 9331739 [No Abstract] [Full Text] [Related]
2. Deletion and reintroduction of glucosyltransferase genes of Streptococcus mutans and role of their gene products in sucrose dependent cellular adherence. Fujiwara T; Tamesada M; Bian Z; Kawabata S; Kimura S; Hamada S Microb Pathog; 1996 Apr; 20(4):225-33. PubMed ID: 8737492 [TBL] [Abstract][Full Text] [Related]
3. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Idone V; Brendtro S; Gillespie R; Kocaj S; Peterson E; Rendi M; Warren W; Michalek S; Krastel K; Cvitkovitch D; Spatafora G Infect Immun; 2003 Aug; 71(8):4351-60. PubMed ID: 12874312 [TBL] [Abstract][Full Text] [Related]
4. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Tsumori H; Kuramitsu H Oral Microbiol Immunol; 1997 Oct; 12(5):274-80. PubMed ID: 9467380 [TBL] [Abstract][Full Text] [Related]
5. Contributions of three glycosyltransferases to sucrose-dependent adherence of Streptococcus mutans. Ooshima T; Matsumura M; Hoshino T; Kawabata S; Sobue S; Fujiwara T J Dent Res; 2001 Jul; 80(7):1672-7. PubMed ID: 11597030 [TBL] [Abstract][Full Text] [Related]
6. Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Kato C; Nakano Y; Lis M; Kuramitsu HK Biochem Biophys Res Commun; 1992 Dec; 189(2):1184-8. PubMed ID: 1472027 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of the Streptococcus mutans wall-associated protein A gene (wapA) results in a decrease in sucrose-dependent adherence and aggregation. Qian H; Dao ML Infect Immun; 1993 Dec; 61(12):5021-8. PubMed ID: 8225578 [TBL] [Abstract][Full Text] [Related]
8. Differential and quantitative analyses of mRNA expression of glucosyltransferases from Streptococcus mutans MT8148. Fujiwara T; Hoshino T; Ooshima T; Hamada S J Dent Res; 2002 Feb; 81(2):109-13. PubMed ID: 11827254 [TBL] [Abstract][Full Text] [Related]
10. Deletion of gtfC of Streptococcus mutans has no influence on the composition of a mixed-species in vitro biofilm model of supragingival plaque. Van Der Ploeg JR; Guggenheim B Eur J Oral Sci; 2004 Oct; 112(5):433-8. PubMed ID: 15458503 [TBL] [Abstract][Full Text] [Related]
11. Comparison of glucan-binding proteins in cariogenicity of Streptococcus mutans. Matsumoto-Nakano M; Fujita K; Ooshima T Oral Microbiol Immunol; 2007 Feb; 22(1):30-5. PubMed ID: 17241168 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of the dextranase gene in Streptococcus mutans. Colby SM; Whiting GC; Russell RR Dev Biol Stand; 1995; 85():377-81. PubMed ID: 8586205 [No Abstract] [Full Text] [Related]
19. Expression of Streptococcus mutans gtf genes in Streptococcus milleri. Fukushima K; Ikeda T; Kuramitsu HK Infect Immun; 1992 Jul; 60(7):2815-22. PubMed ID: 1377183 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between the glucosyltransferase B and C genes. Hazlett KR; Michalek SM; Banas JA Infect Immun; 1998 May; 66(5):2180-5. PubMed ID: 9573105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]