These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 9332252)
1. Bone-marrow MR imaging before and after autologous marrow transplantation in lymphoma patients without known bone-marrow involvement. Lien HH; Blomlie V; Blystad AK; Holte H; Langholm R; Kvaløy S Acta Radiol; 1997 Sep; 38(5):896-902. PubMed ID: 9332252 [TBL] [Abstract][Full Text] [Related]
2. [MR tomography of the bone marrow changes after high-dosage chemotherapy and autologous peripheral stem-cell transplantation]. Pereira PL; Schick F; Einsele H; Farnsworth CT; Kollmansberger C; Mattke A; Duda SH; Claussen CD Rofo; 1999 Mar; 170(3):251-7. PubMed ID: 10230433 [TBL] [Abstract][Full Text] [Related]
3. Female pelvic bone marrow: serial MR imaging before, during, and after radiation therapy. Blomlie V; Rofstad EK; Skjønsberg A; Tverå K; Lien HH Radiology; 1995 Feb; 194(2):537-43. PubMed ID: 7824737 [TBL] [Abstract][Full Text] [Related]
4. Bone marrow abnormalities of foot and ankle: STIR versus T1-weighted contrast-enhanced fat-suppressed spin-echo MR imaging. Schmid MR; Hodler J; Vienne P; Binkert CA; Zanetti M Radiology; 2002 Aug; 224(2):463-9. PubMed ID: 12147843 [TBL] [Abstract][Full Text] [Related]
5. Detection of lymphomatous bone marrow involvement with magnetic resonance imaging. Hoane BR; Shields AF; Porter BA; Shulman HM Blood; 1991 Aug; 78(3):728-38. PubMed ID: 1859885 [TBL] [Abstract][Full Text] [Related]
6. Prospective evaluation of bone marrow signal changes on magnetic resonance tomography during high-dose chemotherapy and peripheral blood stem cell transplantation in patients with breast cancer. Altehoefer C; Laubenberger J; Lange W; Kraus A; Allmann KH; Uhrmeister P; Langer M Invest Radiol; 1997 Oct; 32(10):613-20. PubMed ID: 9342121 [TBL] [Abstract][Full Text] [Related]
7. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. Mirowitz SA; Apicella P; Reinus WR; Hammerman AM AJR Am J Roentgenol; 1994 Jan; 162(1):215-21. PubMed ID: 8273669 [TBL] [Abstract][Full Text] [Related]
8. Repopulation of marrow after transplantation: MR imaging with pathologic correlation. Stevens SK; Moore SG; Amylon MD Radiology; 1990 Apr; 175(1):213-8. PubMed ID: 2315483 [TBL] [Abstract][Full Text] [Related]
9. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Baker LL; Goodman SB; Perkash I; Lane B; Enzmann DR Radiology; 1990 Feb; 174(2):495-502. PubMed ID: 2296658 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the composition of bone marrow prior to and following autologous BMT and PBSCT by magnetic resonance. Schick F; Einsele H; Weiss B; Forster J; Lutz O; Kanz L; Claussen CD Ann Hematol; 1996 Jun; 72(6):361-70. PubMed ID: 8767105 [TBL] [Abstract][Full Text] [Related]
11. Detection of bone marrow abnormalities in patients with Hodgkin's disease by T1 mapping of MR images of lumbar vertebral bone marrow. Smith SR; Roberts N; Percy DF; Edwards RH Br J Cancer; 1992 Feb; 65(2):246-51. PubMed ID: 1739624 [TBL] [Abstract][Full Text] [Related]
12. Magnetic resonance imaging of the bone marrow after bone marrow transplantation or immunosuppressive therapy in aplastic anemia. Park JM; Jung HA; Kim DW; Lee JW; Kim CC; Hahn ST J Korean Med Sci; 2001 Dec; 16(6):725-30. PubMed ID: 11748352 [TBL] [Abstract][Full Text] [Related]
13. Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. Yankelevitz DF; Henschke CI; Knapp PH; Nisce L; Yi Y; Cahill P AJR Am J Roentgenol; 1991 Jul; 157(1):87-92. PubMed ID: 1904679 [TBL] [Abstract][Full Text] [Related]
14. Low-field-strength MR imaging of failed hip arthroplasty: association of femoral periprosthetic signal intensity with radiographic, surgical, and pathologic findings. Sugimoto H; Hirose I; Miyaoka E; Fujita A; Kinebuchi Y; Yamamoto W; Itoh Y Radiology; 2003 Dec; 229(3):718-23. PubMed ID: 14657307 [TBL] [Abstract][Full Text] [Related]
15. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Baur A; Stäbler A; Brüning R; Bartl R; Krödel A; Reiser M; Deimling M Radiology; 1998 May; 207(2):349-56. PubMed ID: 9577479 [TBL] [Abstract][Full Text] [Related]
16. Bone marrow transplantation in patients with multiple myeloma: prognostic significance of MR imaging. Lecouvet FE; Dechambre S; Malghem J; Ferrant A; Vande Berg BC; Maldague B AJR Am J Roentgenol; 2001 Jan; 176(1):91-6. PubMed ID: 11133544 [TBL] [Abstract][Full Text] [Related]
17. Early and late bone-marrow changes after irradiation: MR evaluation. Stevens SK; Moore SG; Kaplan ID AJR Am J Roentgenol; 1990 Apr; 154(4):745-50. PubMed ID: 2107669 [TBL] [Abstract][Full Text] [Related]
18. Low-field magnetic resonance imaging of bone marrow in the lumbar spine, pelvis, and femur in the adult dog. Armbrust LJ; Hoskinson JJ; Biller DS; Wilkerson M Vet Radiol Ultrasound; 2004; 45(5):393-401. PubMed ID: 15487563 [TBL] [Abstract][Full Text] [Related]
19. MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Yasumoto M; Nonomura Y; Yoshimura R; Haraguchi K; Ito S; Ohashi I; Shibuya H Skeletal Radiol; 2002 May; 31(5):263-9. PubMed ID: 11981602 [TBL] [Abstract][Full Text] [Related]
20. Whole-body MRI, FDG-PET/CT, and bone marrow biopsy, for the assessment of bone marrow involvement in patients with newly diagnosed lymphoma. Albano D; Patti C; Lagalla R; Midiri M; Galia M J Magn Reson Imaging; 2017 Apr; 45(4):1082-1089. PubMed ID: 27603267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]