These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9332373)

  • 1. Oligodeoxyribonucleotide length and sequence effects on intramolecular and intermolecular G-quartet formation.
    Cheng AJ; Van Dyke MW
    Gene; 1997 Sep; 197(1-2):253-60. PubMed ID: 9332373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Following G-quartet formation by UV-spectroscopy.
    Mergny JL; Phan AT; Lacroix L
    FEBS Lett; 1998 Sep; 435(1):74-8. PubMed ID: 9755862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-association of G-rich oligodeoxyribonucleotides under conditions promoting purine-motif triplex formation.
    Cheng AJ; Wang JC; Van Dyke MW
    Antisense Nucleic Acid Drug Dev; 1998 Jun; 8(3):215-25. PubMed ID: 9669659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and structural determinants of multi-stranded guanine-rich DNA complexes.
    Poon K; Macgregor RB
    Biophys Chem; 2000 May; 84(3):205-16. PubMed ID: 10852308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides.
    Olivas WM; Maher LJ
    Biochemistry; 1995 Jan; 34(1):278-84. PubMed ID: 7819208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purine-pyrimidine triple-helix formation.
    Cheng AJ; Van Dyke MW
    Nucleic Acids Res; 1994 Nov; 22(22):4742-7. PubMed ID: 7984426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA.
    Tolstonog GV; Li G; Shoeman RL; Traub P
    DNA Cell Biol; 2005 Feb; 24(2):85-110. PubMed ID: 15699629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA molecules can drive the assembly of other DNA molecules into specific four-stranded structures.
    Marco-Haviv Y; Baran N; Manor H
    J Mol Biol; 1999 Feb; 286(1):45-56. PubMed ID: 9931248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence specificity of inter- and intramolecular G-quadruplex formation by human telomeric DNA.
    Pedroso IM; Duarte LF; Yanez G; Burkewitz K; Fletcher TM
    Biopolymers; 2007 Sep; 87(1):74-84. PubMed ID: 17549693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Agrawal S
    Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of quadruplex DNA stationary phases toward amino acids in homodipeptides and alanyl dipeptides.
    Vo TU; McGown LB
    Electrophoresis; 2004 May; 25(9):1230-6. PubMed ID: 15174042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of adenine for guanine in the quadruplex-forming human telomere DNA sequence G(3)(T(2)AG(3))(3).
    Tomasko M; Vorlícková M; Sagi J
    Biochimie; 2009 Feb; 91(2):171-9. PubMed ID: 18852018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions.
    Vorlícková M; Bednárová K; Kejnovská I; Kypr J
    Biopolymers; 2007 May; 86(1):1-10. PubMed ID: 17211886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The guanine-rich fragile X chromosome repeats are reluctant to form tetraplexes.
    Fojtík P; Kejnovská I; Vorlícková M
    Nucleic Acids Res; 2004; 32(1):298-306. PubMed ID: 14718550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of human DNA topoisomerase I with G-quartet structures.
    Arimondo PB; Riou JF; Mergny JL; Tazi J; Sun JS; Garestier T; Hélène C
    Nucleic Acids Res; 2000 Dec; 28(24):4832-8. PubMed ID: 11121473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated assembly of G-quadruplex structures by a small molecule.
    Han H; Cliff CL; Hurley LH
    Biochemistry; 1999 Jun; 38(22):6981-6. PubMed ID: 10353809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of loop residues and cations on the formation and stability of dimeric DNA G-quadruplexes.
    Cevec M; Plavec J
    Biochemistry; 2005 Nov; 44(46):15238-46. PubMed ID: 16285727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration-dependent conformational changes in GQ-forming ODNs.
    Li YY; Abu-Ghazalah R; Zamiri B; Macgregor RB
    Biophys Chem; 2016 Apr; 211():70-5. PubMed ID: 26943018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.