These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9334185)
1. Domain structures and immunogenic regions of the 90-kDa heat-shock protein (HSP90). Probing with a library of anti-HSP90 monoclonal antibodies and limited proteolysis. Nemoto T; Sato N; Iwanari H; Yamashita H; Takagi T J Biol Chem; 1997 Oct; 272(42):26179-87. PubMed ID: 9334185 [TBL] [Abstract][Full Text] [Related]
2. Isoform-specific monoclonal antibodies against HSP90. Nemoto T; Roi R; Matsusaka T; Iwanari H; Yamashita H; Kyakumoto S; Sato N Biochem Mol Biol Int; 1997 Aug; 42(5):881-9. PubMed ID: 9285055 [TBL] [Abstract][Full Text] [Related]
3. Oligomeric forms of the 90-kDa heat shock protein. Nemoto T; Sato N Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):989-95. PubMed ID: 9480920 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of dimer formation of the 90-kDa heat-shock protein. Nemoto T; Ohara-Nemoto Y; Ota M; Takagi T; Yokoyama K Eur J Biochem; 1995 Oct; 233(1):1-8. PubMed ID: 7588731 [TBL] [Abstract][Full Text] [Related]
5. Substitution of only two residues of human Hsp90alpha causes impeded dimerization of Hsp90beta. Kobayakawa T; Yamada S; Mizuno A; Nemoto TK Cell Stress Chaperones; 2008; 13(1):97-104. PubMed ID: 18347946 [TBL] [Abstract][Full Text] [Related]
6. Interaction of the middle domains stabilizes Hsp90α dimer in a closed conformation with high affinity for p23. Synoradzki K; Miszta P; Kazlauskas E; Mickevičiūtė A; Michailovienė V; Matulis D; Filipek S; Bieganowski P Biol Chem; 2018 Mar; 399(4):337-345. PubMed ID: 29337688 [TBL] [Abstract][Full Text] [Related]
7. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. Yamada S; Ono T; Mizuno A; Nemoto TK Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485 [TBL] [Abstract][Full Text] [Related]
8. Identification of the pentapeptide constituting a dominant epitope common to all eukaryotic heat shock protein 90 molecular chaperones. Kishimoto J; Fukuma Y; Mizuno A; Nemoto TK Cell Stress Chaperones; 2005; 10(4):296-311. PubMed ID: 16333984 [TBL] [Abstract][Full Text] [Related]
9. Domain-domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90 molecular chaperone. Nemoto TK; Ono T; Kobayakawa T; Tanaka E; Baba TT; Tanaka K; Takagi T; Gotoh T Eur J Biochem; 2001 Oct; 268(20):5258-69. PubMed ID: 11606187 [TBL] [Abstract][Full Text] [Related]
10. The region adjacent to the highly immunogenic site and shielded by the middle domain is responsible for self-oligomerization/client binding of the HSP90 molecular chaperone. Nemoto TK; Fukuma Y; Yamada S; Kobayakawa T; Ono T; Ohara-Nemoto Y Biochemistry; 2004 Jun; 43(23):7628-36. PubMed ID: 15182205 [TBL] [Abstract][Full Text] [Related]
11. Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. Millson SH; Truman AW; Rácz A; Hu B; Panaretou B; Nuttall J; Mollapour M; Söti C; Piper PW FEBS J; 2007 Sep; 274(17):4453-63. PubMed ID: 17681020 [TBL] [Abstract][Full Text] [Related]
12. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842 [TBL] [Abstract][Full Text] [Related]
13. Interaction between the N-terminal and middle regions is essential for the in vivo function of HSP90 molecular chaperone. Matsumoto S; Tanaka E; Nemoto TK; Ono T; Takagi T; Imai J; Kimura Y; Yahara I; Kobayakawa T; Ayuse T; Oi K; Mizuno A J Biol Chem; 2002 Sep; 277(38):34959-66. PubMed ID: 12121981 [TBL] [Abstract][Full Text] [Related]
14. Protein-selective capture to analyze electrophile adduction of hsp90 by 4-hydroxynonenal. Connor RE; Marnett LJ; Liebler DC Chem Res Toxicol; 2011 Aug; 24(8):1275-82. PubMed ID: 21749116 [TBL] [Abstract][Full Text] [Related]
15. Antibodies to Heat Shock Proteins 90α and 90β in Psoriasis. Damasiewicz-Bodzek A; Szumska M; Tyrpień-Golder K Arch Immunol Ther Exp (Warsz); 2020 Apr; 68(2):9. PubMed ID: 32239296 [TBL] [Abstract][Full Text] [Related]
16. Identification of Isoform-Selective Ligands for the Middle Domain of Heat Shock Protein 90 (Hsp90). Mak OW; Chand R; Reynisson J; Leung IKH Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717777 [TBL] [Abstract][Full Text] [Related]
17. Identification of heat shock protein 90α as an IMH-2 epitope-associated protein and correlation of its mRNA overexpression with colorectal cancer metastasis and poor prognosis. Chen WS; Lee CC; Hsu YM; Chen CC; Huang TS Int J Colorectal Dis; 2011 Aug; 26(8):1009-17. PubMed ID: 21519806 [TBL] [Abstract][Full Text] [Related]
18. Cloning of three heat shock protein genes (HSP70, HSP90α and HSP90β) and their expressions in response to thermal stress in loach (Misgurnus anguillicaudatus) fed with different levels of vitamin C. Yan J; Liang X; Zhang Y; Li Y; Cao X; Gao J Fish Shellfish Immunol; 2017 Jul; 66():103-111. PubMed ID: 28495509 [TBL] [Abstract][Full Text] [Related]
19. Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast. Synoradzki K; Bieganowski P Biochim Biophys Acta; 2015 Feb; 1853(2):445-52. PubMed ID: 25486457 [TBL] [Abstract][Full Text] [Related]
20. The Distinct Assignments for Hsp90α and Hsp90β: More Than Skin Deep. Chang C; Tang X; Woodley DT; Chen M; Li W Cells; 2023 Jan; 12(2):. PubMed ID: 36672211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]