BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 9334383)

  • 1. Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function.
    Blackshaw S; Snyder SH
    J Neurosci; 1997 Nov; 17(21):8074-82. PubMed ID: 9334383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evidence that human ocular ciliary epithelium expresses components involved in phototransduction.
    Bertazolli-Filho R; Ghosh S; Huang W; Wollmann G; Coca-Prados M
    Biochem Biophys Res Commun; 2001 Jun; 284(2):317-25. PubMed ID: 11394879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental patterns of protein expression in photoreceptors implicate distinct environmental versus cell-intrinsic mechanisms.
    Johnson PT; Williams RR; Reese BE
    Vis Neurosci; 2001; 18(1):157-68. PubMed ID: 11347813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recoverin in pineal organs and retinae of various vertebrate species including man.
    Korf HW; White BH; Schaad NC; Klein DC
    Brain Res; 1992 Nov; 595(1):57-66. PubMed ID: 1467959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreceptor-specific proteins in the mammalian pineal organ: immunocytochemical data and functional considerations.
    Schomerus C; Ruth P; Korf HW
    Acta Neurobiol Exp (Wars); 1994; 54 Suppl():9-17. PubMed ID: 7528460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and localization of rhodopsin kinase in the mammalian pineal.
    Zhao X; Haeseleer F; Fariss RN; Huang J; Baehr W; Milam AH; Palczewski K
    Vis Neurosci; 1997; 14(2):225-32. PubMed ID: 9147475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low expression of rhodopsin kinase in pineal gland in Royal College of Surgeons rat.
    Takano Y; Ohguro H; Ohguro I; Yamazaki H; Mamiya K; Ishikawa F; Nakazawa M
    Curr Eye Res; 2003 Aug; 27(2):95-102. PubMed ID: 14632161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recoverin and rhodopsin kinase.
    Chen CK
    Adv Exp Med Biol; 2002; 514():101-7. PubMed ID: 12596917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of the postnatal rat retina in vitro: quantitative RT-PCR analyses of mRNA expression for photoreceptor proteins.
    Liljekvist-Larsson I; Törngren M; Abrahamson M; Johansson K
    Mol Vis; 2003 Dec; 9():657-64. PubMed ID: 14685147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of soluble phototransduction-associated proteins in ground squirrel retina.
    von Schantz M; Szél A; van Veen T; Farber DB
    Invest Ophthalmol Vis Sci; 1994 Oct; 35(11):3922-30. PubMed ID: 7928190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calbindin-D28k, calretinin, and recoverin immunoreactivities in developing chick pineal gland.
    Bastianelli E; Pochet R
    J Pineal Res; 1994 Oct; 17(3):103-11. PubMed ID: 7897581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and regulation of rhodopsin kinase in rat pineal and retina.
    Ho AK; Somers RL; Klein DC
    J Neurochem; 1986 Apr; 46(4):1176-9. PubMed ID: 3950623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications.
    Nordström K; Larsson TA; Larhammar D
    Genomics; 2004 May; 83(5):852-72. PubMed ID: 15081115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of the phototransduction cascade to dim light.
    Langlois G; Chen CK; Palczewski K; Hurley JB; Vuong TM
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4677-82. PubMed ID: 8643463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction.
    Klenchin VA; Calvert PD; Bownds MD
    J Biol Chem; 1995 Jul; 270(27):16147-52. PubMed ID: 7608179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique retina cell phenotypes revealed by immunological analysis of recoverin expression in rat retina cells.
    McGinnis JF; Stepanik PL; Chen W; Elias R; Cao W; Lerious V
    J Neurosci Res; 1999 Jan; 55(2):252-60. PubMed ID: 9972828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bovine iris-ciliary epithelium expresses components of rod phototransduction.
    Ghosh S; Salvador-Silva M; Coca-Prados M
    Neurosci Lett; 2004 Nov; 370(1):7-12. PubMed ID: 15489008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase.
    Senin II; Koch KW; Akhtar M; Philippov PP
    Adv Exp Med Biol; 2002; 514():69-99. PubMed ID: 12596916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.