BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 9334900)

  • 1. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1997 Jul; 11(4):333-44. PubMed ID: 9334900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible matching of test ligands to a 3D pharmacophore using a molecular superposition force field: comparison of predicted and experimental conformations of inhibitors of three enzymes.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1995 Jun; 9(3):237-50. PubMed ID: 7561976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based ligand design for flexible proteins: application of new F-DycoBlock.
    Zhu J; Fan H; Liu H; Shi Y
    J Comput Aided Mol Des; 2001 Nov; 15(11):979-96. PubMed ID: 11989626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacophore-based molecular docking to account for ligand flexibility.
    Joseph-McCarthy D; Thomas BE; Belmarsh M; Moustakas D; Alvarez JC
    Proteins; 2003 May; 51(2):172-88. PubMed ID: 12660987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening.
    Pencheva T; Lagorce D; Pajeva I; Villoutreix BO; Miteva MA
    BMC Bioinformatics; 2008 Oct; 9():438. PubMed ID: 18925937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.
    Friesner RA; Banks JL; Murphy RB; Halgren TA; Klicic JJ; Mainz DT; Repasky MP; Knoll EH; Shelley M; Perry JK; Shaw DE; Francis P; Shenkin PS
    J Med Chem; 2004 Mar; 47(7):1739-49. PubMed ID: 15027865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H; Duan Z; Luo Q; Shi Y
    Proteins; 1999 Sep; 36(4):462-70. PubMed ID: 10450088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E; Walters WP; Charifson PS
    Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions.
    Gresh N
    Curr Pharm Des; 2006; 12(17):2121-58. PubMed ID: 16796560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of HIV-1 protease in complex with a difluoroketone-containing inhibitor: implications for the catalytic mechanism.
    Silva AM; Cachau RE; Baldwin ET; Gulnik S; Sham HL; Erickson JW
    Adv Exp Med Biol; 1995; 362():451-4. PubMed ID: 8540356
    [No Abstract]   [Full Text] [Related]  

  • 13. Automated generation of MCSS-derived pharmacophoric DOCK site points for searching multiconformation databases.
    Joseph-McCarthy D; Alvarez JC
    Proteins; 2003 May; 51(2):189-202. PubMed ID: 12660988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A QXP-based multistep docking procedure for accurate prediction of protein-ligand complexes.
    Alisaraie L; Haller LA; Fels G
    J Chem Inf Model; 2006; 46(3):1174-87. PubMed ID: 16711737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M; Totrov M; Abagyan R
    J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming.
    Gehlhaar DK; Verkhivker GM; Rejto PA; Sherman CJ; Fogel DB; Fogel LJ; Freer ST
    Chem Biol; 1995 May; 2(5):317-24. PubMed ID: 9383433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MCDOCK: a Monte Carlo simulation approach to the molecular docking problem.
    Liu M; Wang S
    J Comput Aided Mol Des; 1999 Sep; 13(5):435-51. PubMed ID: 10483527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using AutoDock for ligand-receptor docking.
    Morris GM; Huey R; Olson AJ
    Curr Protoc Bioinformatics; 2008 Dec; Chapter 8():Unit 8.14. PubMed ID: 19085980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy minimum theorem based on AGA, Lyapunov and force field for CADD techniques.
    Sung WT; Liu YF
    Comput Biol Med; 2010 Feb; 40(2):215-22. PubMed ID: 20047735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition and catalytic mechanism of HIV-1 aspartic protease.
    Silva AM; Cachau RE; Sham HL; Erickson JW
    J Mol Biol; 1996 Jan; 255(2):321-46. PubMed ID: 8551523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.