BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 9334900)

  • 21. Empirical free energy as a target function in docking and design: application to HIV-1 protease inhibitors.
    King BL; Vajda S; DeLisi C
    FEBS Lett; 1996 Apr; 384(1):87-91. PubMed ID: 8797810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational analysis of TMC114, a novel HIV-1 protease inhibitor.
    Nivesanond K; Peeters A; Lamoen D; Van Alsenoy C
    J Chem Inf Model; 2008 Jan; 48(1):99-108. PubMed ID: 18173253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules.
    Waller CL; Oprea TI; Giolitti A; Marshall GR
    J Med Chem; 1993 Dec; 36(26):4152-60. PubMed ID: 8277496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pharmacophore docking algorithm and its application to the cross-docking of 18 HIV-NNRTI's in their binding pockets.
    Daeyaert F; de Jonge M; Heeres J; Koymans L; Lewi P; Vinkers MH; Janssen PA
    Proteins; 2004 Feb; 54(3):526-33. PubMed ID: 14748000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A semiempirical free energy force field with charge-based desolvation.
    Huey R; Morris GM; Olson AJ; Goodsell DS
    J Comput Chem; 2007 Apr; 28(6):1145-52. PubMed ID: 17274016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An anchor-dependent molecular docking process for docking small flexible molecules into rigid protein receptors.
    Lin TH; Lin GL
    J Chem Inf Model; 2008 Aug; 48(8):1638-55. PubMed ID: 18642894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible ligand docking using conformational ensembles.
    Lorber DM; Shoichet BK
    Protein Sci; 1998 Apr; 7(4):938-50. PubMed ID: 9568900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DREAM++: flexible docking program for virtual combinatorial libraries.
    Makino S; Ewing TJ; Kuntz ID
    J Comput Aided Mol Des; 1999 Sep; 13(5):513-32. PubMed ID: 10483532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Q-fit: a probabilistic method for docking molecular fragments by sampling low energy conformational space.
    Jackson RM
    J Comput Aided Mol Des; 2002 Jan; 16(1):43-57. PubMed ID: 12197665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitor docking screened by the modified SAFE_p scoring function: application to cyclic urea HIV-1 PR inhibitors.
    Vilar S; Villaverde MC; Sussman F
    J Comput Chem; 2007 Oct; 28(13):2216-25. PubMed ID: 17450567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel nonpeptide HIV-1 protease inhibitor: elucidation of the binding mode and its application in the design of related analogs.
    Lunney EA; Hagen SE; Domagala JM; Humblet C; Kosinski J; Tait BD; Warmus JS; Wilson M; Ferguson D; Hupe D
    J Med Chem; 1994 Aug; 37(17):2664-77. PubMed ID: 8064795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SDOCKER: a method utilizing existing X-ray structures to improve docking accuracy.
    Wu G; Vieth M
    J Med Chem; 2004 Jun; 47(12):3142-8. PubMed ID: 15163194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 38. Molecular modeling of proteins: a strategy for energy minimization by molecular mechanics in the AMBER force field.
    Kini RM; Evans HJ
    J Biomol Struct Dyn; 1991 Dec; 9(3):475-88. PubMed ID: 1687724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Testing a flexible-receptor docking algorithm in a model binding site.
    Wei BQ; Weaver LH; Ferrari AM; Matthews BW; Shoichet BK
    J Mol Biol; 2004 Apr; 337(5):1161-82. PubMed ID: 15046985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible docking using Tabu search and an empirical estimate of binding affinity.
    Baxter CA; Murray CW; Clark DE; Westhead DR; Eldridge MD
    Proteins; 1998 Nov; 33(3):367-82. PubMed ID: 9829696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.