These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9334903)

  • 1. Multiple automatic base selection: protein-ligand docking based on incremental construction without manual intervention.
    Rarey M; Kramer B; Lengauer T
    J Comput Aided Mol Des; 1997 Jul; 11(4):369-84. PubMed ID: 9334903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-efficient docking of flexible ligands into active sites of proteins.
    Rarey M; Kramer B; Lengauer T
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():300-8. PubMed ID: 7584452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docking of hydrophobic ligands with interaction-based matching algorithms.
    Rarey M; Kramer B; Lengauer T
    Bioinformatics; 1999 Mar; 15(3):243-50. PubMed ID: 10222412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Placement of medium-sized molecular fragments into active sites of proteins.
    Rarey M; Wefing S; Lengauer T
    J Comput Aided Mol Des; 1996 Feb; 10(1):41-54. PubMed ID: 8786414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two implementations of the incremental construction algorithm in flexible docking of thrombin inhibitors.
    Knegtel RM; Bayada DM; Engh RA; von der Saal W; van Geerestein VJ; Grootenhuis PD
    J Comput Aided Mol Des; 1999 Mar; 13(2):167-83. PubMed ID: 10091122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast flexible docking method using an incremental construction algorithm.
    Rarey M; Kramer B; Lengauer T; Klebe G
    J Mol Biol; 1996 Aug; 261(3):470-89. PubMed ID: 8780787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies.
    Kämper A; Apostolakis J; Rarey M; Marian CM; Lengauer T
    J Chem Inf Model; 2006; 46(2):903-11. PubMed ID: 16563022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-fit: a probabilistic method for docking molecular fragments by sampling low energy conformational space.
    Jackson RM
    J Comput Aided Mol Des; 2002 Jan; 16(1):43-57. PubMed ID: 12197665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The particle concept: placing discrete water molecules during protein-ligand docking predictions.
    Rarey M; Kramer B; Lengauer T
    Proteins; 1999 Jan; 34(1):17-28. PubMed ID: 10336380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases.
    Ewing TJ; Makino S; Skillman AG; Kuntz ID
    J Comput Aided Mol Des; 2001 May; 15(5):411-28. PubMed ID: 11394736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved FlexX docking using FlexS-determined base fragment placement.
    Cross SS
    J Chem Inf Model; 2005; 45(4):993-1001. PubMed ID: 16045293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible docking under pharmacophore type constraints.
    Hindle SA; Rarey M; Buning C; Lengaue T
    J Comput Aided Mol Des; 2002 Feb; 16(2):129-49. PubMed ID: 12188022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible ligand docking using conformational ensembles.
    Lorber DM; Shoichet BK
    Protein Sci; 1998 Apr; 7(4):938-50. PubMed ID: 9568900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible ligand docking using evolutionary algorithms: investigating the effects of variation operators and local search hybrids.
    Thomsen R
    Biosystems; 2003 Nov; 72(1-2):57-73. PubMed ID: 14642659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. eHiTS: a new fast, exhaustive flexible ligand docking system.
    Zsoldos Z; Reid D; Simon A; Sadjad SB; Johnson AP
    J Mol Graph Model; 2007 Jul; 26(1):198-212. PubMed ID: 16860582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling.
    Rosenfeld RJ; Goodsell DS; Musah RA; Morris GM; Goodin DB; Olson AJ
    J Comput Aided Mol Des; 2003 Aug; 17(8):525-36. PubMed ID: 14703123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites.
    Welch W; Ruppert J; Jain AN
    Chem Biol; 1996 Jun; 3(6):449-62. PubMed ID: 8807875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.