These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9334933)

  • 1. Dual-channel telemetry system for recording vocalization-correlated neuronal activity in freely moving squirrel monkeys.
    Grohrock P; Häusler U; Jürgens U
    J Neurosci Methods; 1997 Sep; 76(1):7-13. PubMed ID: 9334933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telemetric recording of neuronal activity.
    Jürgens U; Hage SR
    Methods; 2006 Mar; 38(3):195-201. PubMed ID: 16497514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lightweight telemetry system for recording neuronal activity in freely behaving small animals.
    Schregardus DS; Pieneman AW; Ter Maat A; Jansen RF; Brouwer TJ; Gahr ML
    J Neurosci Methods; 2006 Jul; 155(1):62-71. PubMed ID: 16490257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telemetrically recorded neuronal activity in the inferior colliculus and bordering tegmentum during vocal communication in squirrel monkeys (Saimiri sciureus).
    Tammer R; Ehrenreich L; Jürgens U
    Behav Brain Res; 2004 May; 151(1-2):331-6. PubMed ID: 15084450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal activity in the periaqueductal gray and bordering structures during vocal communication in the squirrel monkey.
    Düsterhöft F; Häusler U; Jürgens U
    Neuroscience; 2004; 123(1):53-60. PubMed ID: 14667441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of the pontine brainstem in vocal pattern generation: a telemetric single-unit recording study in the squirrel monkey.
    Hage SR; Jürgens U
    J Neurosci; 2006 Jun; 26(26):7105-15. PubMed ID: 16807339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wireless multi-channel neural amplifier for freely moving animals.
    Szuts TA; Fadeyev V; Kachiguine S; Sher A; Grivich MV; Agrochão M; Hottowy P; Dabrowski W; Lubenov EV; Siapas AG; Uchida N; Litke AM; Meister M
    Nat Neurosci; 2011 Feb; 14(2):263-9. PubMed ID: 21240274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Audio-vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey.
    Hage SR; Jürgens U; Ehret G
    Eur J Neurosci; 2006 Jun; 23(12):3297-308. PubMed ID: 16820019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of a vocal pattern generator in the pontine brainstem of the squirrel monkey.
    Hage SR; Jürgens U
    Eur J Neurosci; 2006 Feb; 23(3):840-4. PubMed ID: 16487165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocalization-correlated single-unit activity in the brain stem of the squirrel monkey.
    Kirzinger A; Jürgens U
    Exp Brain Res; 1991; 84(3):545-60. PubMed ID: 1864326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls.
    Nieder A
    J Neurosci Methods; 2000 Sep; 101(2):157-64. PubMed ID: 10996376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal activity in the medulla oblongata during vocalization. A single-unit recording study in the squirrel monkey.
    Lüthe L; Häusler U; Jürgens U
    Behav Brain Res; 2000 Dec; 116(2):197-210. PubMed ID: 11080551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-channel FM transmitter for acquisition of flight muscle activities from the freely flying hawkmoth, Agrius convolvuli.
    Ando N; Shimoyama I; Kanzaki R
    J Neurosci Methods; 2002 Apr; 115(2):181-7. PubMed ID: 11992669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A digital programmable telemetric system for recording extracellular action potentials.
    Heredia-López FJ; Bata-García JL; Góngora-Alfaro JL; Alvarez-Cervera FJ; Azpiroz-Leehan J
    Behav Res Methods; 2009 May; 41(2):352-8. PubMed ID: 19363175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-chronic laminar recordings in the brainstem of behaving marmoset monkeys.
    Pomberger T; Hage SR
    J Neurosci Methods; 2019 Jan; 311():186-192. PubMed ID: 30352210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniature microdrive-headstage assembly for extracellular recording of neuronal activity with high-impedance electrodes in freely moving mice.
    Korshunov VA
    J Neurosci Methods; 2006 Dec; 158(2):179-85. PubMed ID: 16828875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A telemetry system for single neuronal discharge recording from behaving monkey.
    Yamamoto T; Oomura Y; Aou S; Nakano Y; Nemoto S
    Brain Res Bull; 1984 Jan; 12(1):129-32. PubMed ID: 6370377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Telemetric recordings of single neuron activity and visual scenes in monkeys walking in an open field.
    Lei Y; Sun N; Wilson FA; Wang X; Chen N; Yang J; Peng Y; Wang J; Tian S; Wang M; Miao Y; Zhu W; Qi H; Ma Y
    J Neurosci Methods; 2004 May; 135(1-2):35-41. PubMed ID: 15020087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of telemetric techniques for use in studies of the electrical activity of the brain.
    Simard JM; Schneider GT; Turbes CC
    ISA Trans; 1976; 15(3):246-52. PubMed ID: 992998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.