These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9335120)

  • 1. Characterization of liquid chromatographic stationary phases by Raman spectroscopy. Effect of ligand type.
    Doyle CA; Vickers TJ; Mann CK; Dorsey JG
    J Chromatogr A; 1997 Aug; 779(1-2):91-112. PubMed ID: 9335120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of C18-bonded liquid chromatographic stationary phases by Raman spectroscopy: the effect of mobile phase composition.
    Doyle CA; Vickers TJ; Mann CK; Dorsey JG
    J Chromatogr A; 2000 Apr; 877(1-2):25-39. PubMed ID: 10845787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of C18-bonded liquid chromatographic stationary phases by Raman spectroscopy: the effect of temperature.
    Doyle CA; Vickers TJ; Mann CK; Dorsey JG
    J Chromatogr A; 2000 Apr; 877(1-2):41-59. PubMed ID: 10845788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of hypercrosslinked, surface-confined, ultra-stable silica-based stationary phases.
    Trammell BC; Ma L; Luo H; Hillmyer MA; Carr PW
    J Chromatogr A; 2004 Dec; 1060(1-2):61-76. PubMed ID: 15628152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.
    Soukup J; Jandera P
    J Chromatogr A; 2014 Dec; 1374():102-111. PubMed ID: 25544246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity of stationary phases in reversed-phase liquid chromatography based on the dispersion interactions.
    Turowski M; Morimoto T; Kimata K; Monde H; Ikegami T; Hosoya K; Tanaka N
    J Chromatogr A; 2001 Mar; 911(2):177-90. PubMed ID: 11293579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the retention mechanism of neutral organic compounds on polar chemically bonded stationary phases in reversed-phase liquid chromatography.
    Ali Z; Poole CF
    J Chromatogr A; 2004 Oct; 1052(1-2):199-204. PubMed ID: 15527138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of stationary phases in subcritical fluid chromatography by the solvation parameter model. I. Alkylsiloxane-bonded stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):181-90. PubMed ID: 16487535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds.
    Jandera P; Bocian S; Molíková M; Buszewski B
    J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faster dewetting of water from C
    Gritti F; Hlushkou D; Tallarek U
    J Chromatogr A; 2019 Sep; 1602():253-265. PubMed ID: 31178160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption/partition model of liquid chromatography for chemically bonded stationary phases of the aliphatic cyano, reversed-phase C8 and reversed-phase C18 types.
    Kaczmarski K; Prus W; Kowalska T
    J Chromatogr A; 2000 Feb; 869(1-2):57-64. PubMed ID: 10720225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of silane reagent functionality for fluorinated alkyl and phenyl silica bonded stationary phases prepared in supercritical carbon dioxide.
    Scully NM; Healy LO; O'Mahony T; Glennon JD; Dietrich B; Albert K
    J Chromatogr A; 2008 May; 1191(1-2):99-107. PubMed ID: 18342868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assessment of the retention behaviour of polycyclic aromatic hydrocarbons on reversed phase stationary phases--thermodynamic behaviour on C18 and phenyl-type surfaces.
    Kayillo S; Dennis GR; Shalliker RA
    J Chromatogr A; 2007 Mar; 1145(1-2):133-40. PubMed ID: 17306278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acids, peptides, and proteins as chemically bonded stationary phases--A review.
    Bocian S; Skoczylas M; Buszewski B
    J Sep Sci; 2016 Jan; 39(1):83-92. PubMed ID: 26420703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.
    Aral H; Aral T; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2013 Nov; 116():155-63. PubMed ID: 24148387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High temperature fast chromatography of proteins using a silica-based stationary phase with greatly enhanced low pH stability.
    Yang X; Ma L; Carr PW
    J Chromatogr A; 2005 Jun; 1079(1-2):213-20. PubMed ID: 16038307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of new N,O-dialkyl phosphoramidate-bonded stationary phases for reversed-phase HPLC - retention and selectivity.
    Bocian S; Paca M; Buszewski B
    Analyst; 2013 Sep; 138(18):5221-9. PubMed ID: 23853777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention and selectivity of flavanones on homopolypeptide-bonded stationary phases in both normal- and reversed-phase liquid chromatography.
    Siles BA; Halsall HB; Dorsey JG
    J Chromatogr A; 1995 Jun; 704(2):289-305. PubMed ID: 7670627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of amino-, cyano- and diol-bonded silica in reversed-phase liquid chromatography.
    Kim IW; Lee HS; Lee YK; Jang MD; Par JH
    J Chromatogr A; 2001 Apr; 915(1-2):35-42. PubMed ID: 11358260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.