BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 9335531)

  • 1. Binding of 2,6- and 2,7-dihydroxynaphthalene to wild-type and E-B13Q insulins: dynamic, equilibrium, and molecular modeling investigations.
    Bloom CR; Heymann R; Kaarsholm NC; Dunn MF
    Biochemistry; 1997 Oct; 36(42):12746-58. PubMed ID: 9335531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Half-site reactivity, negative cooperativity, and positive cooperativity: quantitative considerations of a plausible model.
    Bloom CR; Kaarsholm NC; Ha J; Dunn MF
    Biochemistry; 1997 Oct; 36(42):12759-65. PubMed ID: 9335532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the allosteric properties of the Co(II)- and Zn(II)-substituted insulin hexamers.
    Bloom CR; Wu N; Dunn A; Kaarsholm NC; Dunn MF
    Biochemistry; 1998 Aug; 37(31):10937-44. PubMed ID: 9692986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
    Rahuel-Clermont S; French CA; Kaarsholm NC; Dunn MF; Chou CI
    Biochemistry; 1997 May; 36(19):5837-45. PubMed ID: 9153424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxylate ions are strong allosteric ligands for the HisB10 sites of the R-state insulin hexamer.
    Huang ST; Choi WE; Bloom C; Leuenberger M; Dunn MF
    Biochemistry; 1997 Aug; 36(32):9878-88. PubMed ID: 9245420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of phenol to R6 insulin hexamers.
    Berchtold H; Hilgenfeld R
    Biopolymers; 1999; 51(2):165-72. PubMed ID: 10397800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics of a protein assembly. 1H-NMR studies of the 36 kDa R6 insulin hexamer.
    Jacoby E; Hua QX; Stern AS; Frank BH; Weiss MA
    J Mol Biol; 1996 Apr; 258(1):136-57. PubMed ID: 8613983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers.
    Baudin V; Pagnier J; Kiger L; Kister J; Schaad O; Bihoreau MT; Lacaze N; Marden MC; Edelstein SJ; Poyart C
    Protein Sci; 1993 Aug; 2(8):1320-30. PubMed ID: 8401217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic evidence for preexisting T- and R-state insulin hexamer conformations.
    Choi WE; Borchardt D; Kaarsholm NC; Brzovic PS; Dunn MF
    Proteins; 1996 Dec; 26(4):377-90. PubMed ID: 8990494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
    Dunn MF
    Biometals; 2005 Aug; 18(4):295-303. PubMed ID: 16158220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer.
    Huus K; Havelund S; Olsen HB; Sigurskjold BW; van de Weert M; Frokjaer S
    Biochemistry; 2006 Mar; 45(12):4014-24. PubMed ID: 16548529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic core substitutions in calbindin D9k: effects on Ca2+ binding and dissociation.
    Kragelund BB; Jönsson M; Bifulco G; Chazin WJ; Nilsson H; Finn BE; Linse S
    Biochemistry; 1998 Jun; 37(25):8926-37. PubMed ID: 9636034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer.
    Brzović PS; Choi WE; Borchardt D; Kaarsholm NC; Dunn MF
    Biochemistry; 1994 Nov; 33(44):13057-69. PubMed ID: 7947711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand binding to wild-type and E-B13Q mutant insulins: a three-state allosteric model system showing half-site reactivity.
    Bloom CR; Choi WE; Brzovic PS; Ha JJ; Huang ST; Kaarsholm NC; Dunn MF
    J Mol Biol; 1995 Jan; 245(4):324-30. PubMed ID: 7837266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin.
    Makio T; Takasu-Ishikawa E; Kuwajima K
    J Mol Biol; 2001 Sep; 312(3):555-67. PubMed ID: 11563916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of heparin activation of antithrombin: evidence for an induced-fit model of allosteric activation involving two interaction subsites.
    Desai UR; Petitou M; Björk I; Olson ST
    Biochemistry; 1998 Sep; 37(37):13033-41. PubMed ID: 9737884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers.
    Birnbaum DT; Dodd SW; Saxberg BE; Varshavsky AD; Beals JM
    Biochemistry; 1996 Apr; 35(17):5366-78. PubMed ID: 8611526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman signatures of ligand binding and allosteric conformation change in hexameric insulin.
    Ferrari D; Diers JR; Bocian DF; Kaarsholm NC; Dunn MF
    Biopolymers; 2001; 62(5):249-60. PubMed ID: 11745120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.