BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9335544)

  • 1. Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes.
    Butko P; Huang F; Pusztai-Carey M; Surewicz WK
    Biochemistry; 1997 Oct; 36(42):12862-8. PubMed ID: 9335544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane permeabilization induced by cytolytic delta-endotoxin CytA from Bacillus thuringiensis var. israelensis.
    Butko P; Huang F; Pusztai-Carey M; Surewicz WK
    Biochemistry; 1996 Sep; 35(35):11355-60. PubMed ID: 8784190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis.
    Manceva SD; Pusztai-Carey M; Russo PS; Butko P
    Biochemistry; 2005 Jan; 44(2):589-97. PubMed ID: 15641784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate.
    Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A
    Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus thuringiensis cytolytic toxin associates specifically with its synthetic helices A and C in the membrane bound state. Implications for the assembly of oligomeric transmembrane pores.
    Gazit E; Burshtein N; Ellar DJ; Sawyer T; Shai Y
    Biochemistry; 1997 Dec; 36(49):15546-54. PubMed ID: 9398283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer.
    Du J; Knowles BH; Li J; Ellar DJ
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):185-93. PubMed ID: 9931315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Liberation of non-penetrating spin labels from erythrocytes and liposomes after treatment with bacterial protein].
    Komarov AM; Kaiushin LP
    Biofizika; 1988; 33(2):293-6. PubMed ID: 2839242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A broad-spectrum cytolytic toxin from Bacillus thuringiensis var. kyushuensis.
    Knowles BH; White PJ; Nicholls CN; Ellar DJ
    Proc Biol Sci; 1992 Apr; 248(1321):1-7. PubMed ID: 1355907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of prion protein to lipid membranes and implications for prion conversion.
    Sanghera N; Pinheiro TJ
    J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structural changes in Cry3A delta-endotoxin from Bacillus thuringiensis var. Tenebrionis in alcohol solutions at pH 2.0].
    Tiktopulo EI; Kiseleva NV; Vasil'ev VD; Kopylov PKh; Potekhin SA; Koretskaia NG
    Biofizika; 2005; 50(1):28-38. PubMed ID: 15759500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers.
    Raja MM; Kinne RK
    Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL.
    Powl AM; East JM; Lee AG
    Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH and ionic strength on the cytolytic toxin Cyt1A: a fluorescence spectroscopy study.
    Manceva SD; Pusztai-Carey M; Butko P
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):123-30. PubMed ID: 15158719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition state of the rate-limiting step of heat denaturation of Cry3A delta-endotoxin.
    Potekhin SA; Loseva OI; Tiktopulo EI; Dobritsa AP
    Biochemistry; 1999 Mar; 38(13):4121-7. PubMed ID: 10194327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Thermodynamic analysis of domain organization of Bacillus thuringiensis toxins].
    Loseva OI; Kirkitadze MD; Dobritsa AP; Potekhin SA
    Bioorg Khim; 1996 Dec; 22(12):900-6. PubMed ID: 9054340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion.
    Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A
    Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell targeting of a pore-forming toxin, CytA delta-endotoxin from Bacillus thuringiensis subspecies israelensis, by conjugating CytA with anti-Thy 1 monoclonal antibodies and insulin.
    al-yahyaee SA; Ellar DJ
    Bioconjug Chem; 1996; 7(4):451-60. PubMed ID: 8853459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.