These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 9335569)

  • 41. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1.
    Frech C; Schmid FX
    J Mol Biol; 1995 Aug; 251(1):135-49. PubMed ID: 7643382
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation.
    Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C
    Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid formation of the native 14-38 disulfide bond in the early stages of BPTI folding.
    Dadlez M; Kim PS
    Biochemistry; 1996 Dec; 35(50):16153-64. PubMed ID: 8973187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of cysteine to serine substitutions in the two inter-chain disulfide bonds of insulin.
    Guo ZY; Feng YM
    Biol Chem; 2001 Mar; 382(3):443-8. PubMed ID: 11347892
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide.
    Kibria FM; Lees WJ
    J Am Chem Soc; 2008 Jan; 130(3):796-7. PubMed ID: 18166059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues.
    Narayan M; Xu G; Ripoll DR; Zhai H; Breuker K; Wanjalla C; Leung HJ; Navon A; Welker E; McLafferty FW; Scheraga HA
    J Mol Biol; 2004 May; 338(4):795-809. PubMed ID: 15099746
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Minimization of cavity size ensures protein stability and folding: structures of Phe46-replaced bovine pancreatic RNase A.
    Kadonosono T; Chatani E; Hayashi R; Moriyama H; Ueki T
    Biochemistry; 2003 Sep; 42(36):10651-8. PubMed ID: 12962489
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stability and structure-forming properties of the two disulfide bonds of alpha-conotoxin GI.
    Kaerner A; Rabenstein DL
    Biochemistry; 1999 Apr; 38(17):5459-70. PubMed ID: 10220333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Significance of the four carboxyl terminal amino acid residues of bovine pancreatic ribonuclease A for structural folding.
    Fujii T; Ueno H; Hayashi R
    J Biochem; 2002 Feb; 131(2):193-200. PubMed ID: 11820931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preferential binding of an unfolded protein to DsbA.
    Frech C; Wunderlich M; Glockshuber R; Schmid FX
    EMBO J; 1996 Jan; 15(2):392-98. PubMed ID: 8617214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways.
    Talluri S; Rothwarf DM; Scheraga HA
    Biochemistry; 1994 Aug; 33(34):10437-49. PubMed ID: 8068682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Major kinetic traps for the oxidative folding of leech carboxypeptidase inhibitor.
    Salamanca S; Li L; Vendrell J; Aviles FX; Chang JY
    Biochemistry; 2003 Jun; 42(22):6754-61. PubMed ID: 12779330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for the underlying cause of diversity of the disulfide folding pathway.
    Chang JY
    Biochemistry; 2004 Apr; 43(15):4522-9. PubMed ID: 15078098
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Folding pathway of guanidine-denatured disulfide-intact wild-type and mutant bovine pancreatic ribonuclease A.
    Dodge RW; Laity JH; Rothwarf DM; Shimotakahara S; Scheraga HA
    J Protein Chem; 1994 May; 13(4):409-21. PubMed ID: 7986344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new mutant of bovine seminal ribonuclease with a reversed swapping propensity.
    Ercole C; Spadaccini R; Alfano C; Tancredi T; Picone D
    Biochemistry; 2007 Feb; 46(8):2227-32. PubMed ID: 17269658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Valine 108, a chain-folding initiation site-belonging residue, crucial for the ribonuclease A stability.
    Coll MG; Protasevich II; Torrent J; Ribó M; Lobachov VM; Makarov AA; Vilanova M
    Biochem Biophys Res Commun; 1999 Nov; 265(2):356-60. PubMed ID: 10558871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Native-like tertiary structure formation in the alpha-domain of a hen lysozyme two-disulfide variant.
    Tachibana H; Oka T; Akasaka K
    J Mol Biol; 2001 Nov; 314(2):311-20. PubMed ID: 11718564
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From ribonuclease A toward bovine seminal ribonuclease: a step by step thermodynamic analysis.
    Catanzano F; Graziano G; Cafaro V; D'Alessio G; Di Donato A; Barone G
    Biochemistry; 1997 Nov; 36(47):14403-8. PubMed ID: 9398158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structures of two mutants that have implications for the folding of bovine pancreatic ribonuclease A.
    Pearson MA; Karplus PA; Dodge RW; Laity JH; Scheraga HA
    Protein Sci; 1998 May; 7(5):1255-8. PubMed ID: 9605332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.