These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9335609)

  • 1. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells.
    Miller EM; Hough HL; Cho JW; Nickoloff JA
    Genetics; 1997 Oct; 147(2):743-53. PubMed ID: 9335609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches.
    Bill CA; Duran WA; Miselis NR; Nickoloff JA
    Genetics; 1998 Aug; 149(4):1935-43. PubMed ID: 9691048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells.
    Deng WP; Nickoloff JA
    Mol Cell Biol; 1994 Jan; 14(1):400-6. PubMed ID: 8264607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased short tract repair of palindromic loop mismatches in mammalian cells.
    Taghian DG; Hough H; Nickoloff JA
    Genetics; 1998 Mar; 148(3):1257-68. PubMed ID: 9539440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure.
    Bill CA; Taghian DG; Duran WA; Nickoloff JA
    Mutat Res; 2001 Apr; 485(3):255-65. PubMed ID: 11267836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells.
    Kim PM; Allen C; Wagener BM; Shen Z; Nickoloff JA
    Nucleic Acids Res; 2001 Nov; 29(21):4352-60. PubMed ID: 11691922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae.
    Weng YS; Nickoloff JA
    Genetics; 1998 Jan; 148(1):59-70. PubMed ID: 9475721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae.
    Clikeman JA; Wheeler SL; Nickoloff JA
    Genetics; 2001 Apr; 157(4):1481-91. PubMed ID: 11290705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting.
    Li J; Baker MD
    J Mol Biol; 2000 Jan; 295(3):505-16. PubMed ID: 10623542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of heteroduplex DNA in Xenopus laevis oocytes.
    Lehman CW; Jeong-Yu S; Trautman JK; Carroll D
    Genetics; 1994 Oct; 138(2):459-70. PubMed ID: 7828827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells.
    Taghian DG; Nickoloff JA
    Mol Cell Biol; 1997 Nov; 17(11):6386-93. PubMed ID: 9343400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marker structure and recombination substrate environment influence conversion preference of broken and unbroken alleles in Saccharomyces cerevisiae.
    Weng Y; Barton SL; Cho JW; Nickoloff JA
    Mol Genet Genomics; 2001 May; 265(3):461-8. PubMed ID: 11405629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair.
    Priebe SD; Westmoreland J; Nilsson-Tillgren T; Resnick MA
    Mol Cell Biol; 1994 Jul; 14(7):4802-14. PubMed ID: 8007979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells.
    Li J; Baker MD
    Genetics; 2000 Mar; 154(3):1281-9. PubMed ID: 10757769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells.
    Elliott B; Jasin M
    Mol Cell Biol; 2001 Apr; 21(8):2671-82. PubMed ID: 11283247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.
    Guo X; Jinks-Robertson S
    DNA Repair (Amst); 2013 Dec; 12(12):1053-61. PubMed ID: 24120148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae.
    Alani E; Reenan RA; Kolodner RD
    Genetics; 1994 May; 137(1):19-39. PubMed ID: 8056309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination.
    Mitchel K; Zhang H; Welz-Voegele C; Jinks-Robertson S
    Mol Cell; 2010 Apr; 38(2):211-22. PubMed ID: 20417600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation.
    Frankenberg-Schwager M; Gebauer A; Koppe C; Wolf H; Pralle E; Frankenberg D
    Radiat Res; 2009 Mar; 171(3):265-73. PubMed ID: 19267553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination.
    McDonald JP; Rothstein R
    Genetics; 1994 Jun; 137(2):393-405. PubMed ID: 8070653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.