BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 9335618)

  • 1. Evolutionary dynamics of sporophytic self-incompatibility alleles in plants.
    Schierup MH; Vekemans X; Christiansen FB
    Genetics; 1997 Oct; 147(2):835-46. PubMed ID: 9335618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allelic genealogies in sporophytic self-incompatibility systems in plants.
    Schierup MH; Vekemans X; Christiansen FB
    Genetics; 1998 Nov; 150(3):1187-98. PubMed ID: 9799270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems.
    Billiard S; Castric V; Vekemans X
    Genetics; 2007 Mar; 175(3):1351-69. PubMed ID: 17237502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of dominance in sporophytic self-incompatibility systems: I. Genetic load and coevolution of levels of dominance in pollen and pistil.
    Llaurens V; Billiard S; Castric V; Vekemans X
    Evolution; 2009 Sep; 63(9):2427-37. PubMed ID: 19473398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the evolution of genetic incompatibility systems. V. Origin of sporophytic self-incompatibility in response to overdominance in viability.
    Uyenoyama MK
    Theor Popul Biol; 1989 Dec; 36(3):339-65. PubMed ID: 2609281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of dominance in sporophytic self-incompatibility systems. II. Mate availability and recombination.
    Schoen DJ; Busch JW
    Evolution; 2009 Aug; 63(8):2099-113. PubMed ID: 19453382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical methods for estimating the effective number of alleles, expected heterozygosity and genetic distance in self-incompatibility locus.
    Tajima F; Tokunaga T; Miyashita NT
    Jpn J Genet; 1994 Jun; 69(3):287-95. PubMed ID: 8080659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary dynamics of self-incompatibility alleles in Brassica.
    Uyenoyama MK
    Genetics; 2000 Sep; 156(1):351-9. PubMed ID: 10978298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances.
    Castric V; Vekemans X
    Mol Ecol; 2004 Oct; 13(10):2873-89. PubMed ID: 15367105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the number of self-incompatibility alleles in finite populations: From old models to new results.
    Czuppon P; Billiard S
    J Evol Biol; 2022 Oct; 35(10):1296-1308. PubMed ID: 35852940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does frequency-dependent selection with complex dominance interactions accurately predict allelic frequencies at the self-incompatibility locus in Arabidopsis halleri?
    Llaurens V; Billiard S; Leducq JB; Castric V; Klein EK; Vekemans X
    Evolution; 2008 Oct; 62(10):2545-57. PubMed ID: 18647339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient SI and the dynamics of self-incompatibility alleles: a simulation model and empirical test.
    Goodwillie C
    Evolution; 2008 Aug; 62(8):2105-11. PubMed ID: 18507744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata(Brassicaceae) with sporophytic control of self-incompatibility.
    Mable BK; Schierup MH; Charlesworth D
    Heredity (Edinb); 2003 Jun; 90(6):422-31. PubMed ID: 12764417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift.
    Stoeckel S; Klein EK; Oddou-Muratorio S; Musch B; Mariette S
    Evolution; 2012 Feb; 66(2):486-504. PubMed ID: 22276543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the evolution of genetic incompatibility systems. VI. A three-locus modifier model for the origin of gametophytic self-incompatibility.
    Uyenoyama MK
    Genetics; 1991 Jun; 128(2):453-69. PubMed ID: 2071024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MATE AVAILABILITY AND FECUNDITY SELECTION IN MULTI-ALLELIC SELF-INCOMPATIBILITY SYSTEMS IN PLANTS.
    Vekemans X; Schierup MH; Christiansen FB
    Evolution; 1998 Feb; 52(1):19-29. PubMed ID: 28568138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in
    Burghgraeve N; Simon S; Barral S; Fobis-Loisy I; Holl AC; Ponitzki C; Schmitt E; Vekemans X; Castric V
    Genetics; 2020 Jul; 215(3):653-664. PubMed ID: 32461267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species.
    Hiscock SJ
    Heredity (Edinb); 2000 Jul; 85 ( Pt 1)():10-9. PubMed ID: 10971686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and diversification dynamics of self-incompatibility haplotypes.
    Gervais CE; Castric V; Ressayre A; Billiard S
    Genetics; 2011 Jul; 188(3):625-36. PubMed ID: 21515570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates.
    Brennan AC; Tabah DA; Harris SA; Hiscock SJ
    Heredity (Edinb); 2011 Jan; 106(1):113-23. PubMed ID: 20372180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.