These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 9335970)
1. High-frequency magnetic signals in the human somatosensory cortex. Hashimoto I; Mashiko T; Imada T Electroencephalogr Clin Neurophysiol Suppl; 1996; 47():67-80. PubMed ID: 9335970 [No Abstract] [Full Text] [Related]
2. Changes of recovery function in median nerve somatosensory evoked potentials from awake to sleep. Ichikawa H; Yamada T; Taniguchi S; Hara M; Fujisawa R; Shimizu H; Kimura J J Clin Neurophysiol; 2009 Jun; 26(3):183-91. PubMed ID: 19417685 [TBL] [Abstract][Full Text] [Related]
3. [Serotoninergic effects in the early ontogenesis of the cat are effected in the neocortex by inhibitory interneurons]. Raevskiĭ VV Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(2):362-4. PubMed ID: 3035821 [No Abstract] [Full Text] [Related]
4. Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex. Hashimoto I; Mashiko T; Imada T Electroencephalogr Clin Neurophysiol; 1996 May; 100(3):189-203. PubMed ID: 8681860 [TBL] [Abstract][Full Text] [Related]
5. Maturation of somatosensory cortical processing from birth to adulthood revealed by magnetoencephalography. Pihko E; Nevalainen P; Stephen J; Okada Y; Lauronen L Clin Neurophysiol; 2009 Aug; 120(8):1552-61. PubMed ID: 19560400 [TBL] [Abstract][Full Text] [Related]
6. Slow repetitive transcranial magnetic stimulation increases somatosensory high-frequency oscillations in humans. Ogawa A; Ukai S; Shinosaki K; Yamamoto M; Kawaguchi S; Ishii R; Takeda M Neurosci Lett; 2004 Apr; 358(3):193-6. PubMed ID: 15039114 [TBL] [Abstract][Full Text] [Related]
7. Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. Enager P; Piilgaard H; Offenhauser N; Kocharyan A; Fernandes P; Hamel E; Lauritzen M J Cereb Blood Flow Metab; 2009 May; 29(5):976-86. PubMed ID: 19337274 [TBL] [Abstract][Full Text] [Related]
8. High frequency (600 Hz) bursts of spike-like activities generated in the human cerebral somatosensory system. Curio G Electroencephalogr Clin Neurophysiol Suppl; 1999; 49():56-61. PubMed ID: 10533086 [No Abstract] [Full Text] [Related]
9. High frequency components in somatosensory evoked potentials. Ozaki I; Suzuki C; Yaegashi Y; Baba M; Matsunaga M; Hashimoto I Electroencephalogr Clin Neurophysiol Suppl; 1999; 49():52-5. PubMed ID: 10533085 [No Abstract] [Full Text] [Related]
10. Neuromagnetic recordings and magnetic brain stimulation in the evaluation of sensorimotor hand area interhemispheric differences: normative, experimental and patients' data. Rossini PM; Pauri F; Cicinelli P; Pasqualetti P; Traversa R; Tecchio F Electroencephalogr Clin Neurophysiol Suppl; 1999; 50():210-20. PubMed ID: 10689465 [No Abstract] [Full Text] [Related]
11. Transcranial direct current stimulation applied over the somatosensory cortex - differential effect on low and high frequency SEPs. Dieckhöfer A; Waberski TD; Nitsche M; Paulus W; Buchner H; Gobbelé R Clin Neurophysiol; 2006 Oct; 117(10):2221-7. PubMed ID: 16931142 [TBL] [Abstract][Full Text] [Related]
12. Effects of general anesthesia on high-frequency oscillations in somatosensory evoked potentials. Urasaki E; Genmoto T; Yokota A; Maeda R; Akamatsu N J Clin Neurophysiol; 2006 Oct; 23(5):426-30. PubMed ID: 17016153 [TBL] [Abstract][Full Text] [Related]
13. Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Ishikawa S; Matsunaga K; Nakanishi R; Kawahira K; Murayama N; Tsuji S; Huang YZ; Rothwell JC Clin Neurophysiol; 2007 May; 118(5):1033-43. PubMed ID: 17382582 [TBL] [Abstract][Full Text] [Related]
14. Voltage-sensitive dye imaging of intervibrissal fur-evoked activity in the rat somatosensory cortex. Takashima I; Kajiwara R; Iijima T Neurosci Lett; 2005 Jun; 381(3):258-63. PubMed ID: 15896480 [TBL] [Abstract][Full Text] [Related]
15. fMRI reflects functional connectivity of human somatosensory cortex. Blatow M; Nennig E; Durst A; Sartor K; Stippich C Neuroimage; 2007 Sep; 37(3):927-36. PubMed ID: 17629500 [TBL] [Abstract][Full Text] [Related]
16. Modulation of high-frequency (600 Hz) somatosensory-evoked potentials after rTMS of the primary sensory cortex. Restuccia D; Ulivelli M; De Capua A; Bartalini S; Rossi S Eur J Neurosci; 2007 Oct; 26(8):2349-58. PubMed ID: 17894818 [TBL] [Abstract][Full Text] [Related]
17. [The effects of aging on high frequency oscillations of median nerve somatosensory-evoked potentials in human]. Huang HP; Che CH; Zheng A Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2005 Nov; 21(4):469-70. PubMed ID: 21180178 [No Abstract] [Full Text] [Related]
18. [The cerebral control of the somatosensory and auditory afferent projections to the cerebral cortex in man and animals]. Liubimov NN; Orlova TV; Liubimov SN Usp Fiziol Nauk; 1998; 29(3):3-20. PubMed ID: 9749454 [TBL] [Abstract][Full Text] [Related]
19. Somatosensory volleys and cortical evoked potentials: 'first come, first served'? Garcia-Larrea L Pain; 2004 Nov; 112(1-2):5-7. PubMed ID: 15494177 [No Abstract] [Full Text] [Related]
20. Viewing the body prepares the brain for touch: effects of TMS over somatosensory cortex. Fiorio M; Haggard P Eur J Neurosci; 2005 Aug; 22(3):773-7. PubMed ID: 16101759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]