These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9335980)

  • 21. Extracting 3D from motion: differences in human and monkey intraparietal cortex.
    Vanduffel W; Fize D; Peuskens H; Denys K; Sunaert S; Todd JT; Orban GA
    Science; 2002 Oct; 298(5592):413-5. PubMed ID: 12376701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of feature- and space-based attention: response modulation and baseline increases.
    McMains SA; Fehd HM; Emmanouil TA; Kastner S
    J Neurophysiol; 2007 Oct; 98(4):2110-21. PubMed ID: 17671104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different processing phases for features, figures, and selective attention in the primary visual cortex.
    Roelfsema PR; Tolboom M; Khayat PS
    Neuron; 2007 Dec; 56(5):785-92. PubMed ID: 18054856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects.
    Schultz J; Imamizu H; Kawato M; Frith CD
    J Cogn Neurosci; 2004 Dec; 16(10):1695-705. PubMed ID: 15701222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. fMRI evidence for objects as the units of attentional selection.
    O'Craven KM; Downing PE; Kanwisher N
    Nature; 1999 Oct; 401(6753):584-7. PubMed ID: 10524624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of the visual ventral pathway to long-range apparent motion.
    Zhuo Y; Zhou TG; Rao HY; Wang JJ; Meng M; Chen M; Zhou C; Chen L
    Science; 2003 Jan; 299(5605):417-20. PubMed ID: 12532023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global effects of feature-based attention in human visual cortex.
    Saenz M; Buracas GT; Boynton GM
    Nat Neurosci; 2002 Jul; 5(7):631-2. PubMed ID: 12068304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP; Sereno MI
    Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Separate processing of different global-motion structures in visual cortex is revealed by FMRI.
    Koyama S; Sasaki Y; Andersen GJ; Tootell RB; Matsuura M; Watanabe T
    Curr Biol; 2005 Nov; 15(22):2027-32. PubMed ID: 16303562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A contralateral preference in the lateral occipital area: sensory and attentional mechanisms.
    Niemeier M; Goltz HC; Kuchinad A; Tweed DB; Vilis T
    Cereb Cortex; 2005 Mar; 15(3):325-31. PubMed ID: 15269109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined functional MRI and diffusion tensor imaging analysis of visual motion pathways.
    Lanyon LJ; Giaschi D; Young SA; Fitzpatrick K; Diao L; Bjornson BH; Barton JJ
    J Neuroophthalmol; 2009 Jun; 29(2):96-103. PubMed ID: 19491631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex.
    Fine I; Finney EM; Boynton GM; Dobkins KR
    J Cogn Neurosci; 2005 Oct; 17(10):1621-37. PubMed ID: 16269101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): middle temporal area, middle temporal crescent, and surrounding cortex.
    Rosa MG; Elston GN
    J Comp Neurol; 1998 Apr; 393(4):505-27. PubMed ID: 9550155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural correlates of spontaneous percept switches in ambiguous stimuli: an event-related functional magnetic resonance imaging study.
    Ilg R; Wohlschläger AM; Burazanis S; Wöller A; Nunnemann S; Mühlau M
    Eur J Neurosci; 2008 Dec; 28(11):2325-32. PubMed ID: 19046373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extrastriate area V5 (MT) and its role in the processing of visual motion.
    Riecanský I
    Cesk Fysiol; 2004; 53(1):17-22. PubMed ID: 15702885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays.
    Peuskens H; Claeys KG; Todd JT; Norman JF; Van Hecke P; Orban GA
    J Cogn Neurosci; 2004 May; 16(4):665-82. PubMed ID: 15165355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The physiological basis of attentional modulation in extrastriate visual areas.
    Chawla D; Rees G; Friston KJ
    Nat Neurosci; 1999 Jul; 2(7):671-6. PubMed ID: 10404202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repetition suppression in occipital-temporal visual areas is modulated by physical rather than semantic features of objects.
    Chouinard PA; Morrissey BF; Köhler S; Goodale MA
    Neuroimage; 2008 May; 41(1):130-44. PubMed ID: 18375148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuroscience. Illusions and perceived images in the primate brain.
    Eysel UT
    Science; 2003 Oct; 302(5646):789-91. PubMed ID: 14593154
    [No Abstract]   [Full Text] [Related]  

  • 40. Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+.
    Silvanto J; Muggleton NG
    Neuroimage; 2008 May; 40(4):1841-8. PubMed ID: 18353682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.