BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 9336168)

  • 21. The flattened face of type II beta phosphatidylinositol phosphate kinase binds acidic phospholipid membranes.
    Burden LM; Rao VD; Murray D; Ghirlando R; Doughman SD; Anderson RA; Hurley JH
    Biochemistry; 1999 Nov; 38(46):15141-9. PubMed ID: 10563796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased concentration of polyvalent phospholipids in the adsorption domain of a charged protein.
    Haleva E; Ben-Tal N; Diamant H
    Biophys J; 2004 Apr; 86(4):2165-78. PubMed ID: 15041657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.
    May S; Harries D; Ben-Shaul A
    Biophys J; 2000 Oct; 79(4):1747-60. PubMed ID: 11023883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Similar structures but different mechanisms: Prediction of FABPs-membrane interaction by electrostatic calculation.
    Zamarreño F; Herrera FE; Córsico B; Costabel MD
    Biochim Biophys Acta; 2012 Jul; 1818(7):1691-7. PubMed ID: 22446190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes.
    Mosior M; McLaughlin S
    Biophys J; 1991 Jul; 60(1):149-59. PubMed ID: 1883933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation.
    Wenk MR; Seelig J
    Biochemistry; 1998 Mar; 37(11):3909-16. PubMed ID: 9521712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic characterization of the association of small basic peptides with membranes containing acidic lipids.
    Montich G; Scarlata S; McLaughlin S; Lehrmann R; Seelig J
    Biochim Biophys Acta; 1993 Feb; 1146(1):17-24. PubMed ID: 8443223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles.
    Struppe J; Komives EA; Taylor SS; Vold RR
    Biochemistry; 1998 Nov; 37(44):15523-7. PubMed ID: 9799515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of peripheral proteins to mixed lipid membranes: effect of lipid demixing upon binding.
    Heimburg T; Angerstein B; Marsh D
    Biophys J; 1999 May; 76(5):2575-86. PubMed ID: 10233072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding of basic amphipathic peptides to neutral phospholipid membranes: a thermodynamic study applied to dansyl-labeled melittin and substance P analogues.
    Pérez-Payá E; Porcar I; Gómez CM; Pedrós J; Campos A; Abad C
    Biopolymers; 1997 Aug; 42(2):169-81. PubMed ID: 9234996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.
    Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN
    Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B.
    Leventis R; Silvius JR
    Biochemistry; 1998 May; 37(20):7640-8. PubMed ID: 9585579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resolution of phospholipid conformational heterogeneity in model membranes by spin-label EPR and frequency-domain fluorescence spectroscopy.
    Squier TC; Mahaney JE; Yin JJ; Lai CS; Lakowicz JR
    Biophys J; 1991 Mar; 59(3):654-69. PubMed ID: 1646658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Location and dynamics of basic peptides at the membrane interface: electron paramagnetic resonance spectroscopy of tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid-labeled peptides.
    Victor KG; Cafiso DS
    Biophys J; 2001 Oct; 81(4):2241-50. PubMed ID: 11566794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Packing constraints and electrostatic surface potentials determine transmembrane asymmetry of phosphatidylethanol.
    Victorov AV; Janes N; Taraschi TF; Hoek JB
    Biophys J; 1997 Jun; 72(6):2588-98. PubMed ID: 9168034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling peptide binding to anionic membrane pores.
    He Y; Prieto L; Lazaridis T
    J Comput Chem; 2013 Jun; 34(17):1463-75. PubMed ID: 23580260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR investigation of the electrostatic effect in binding of a neuropeptide, achatin-I, to phosphatidylcholine bilayers.
    Kimura T; Ninomiya K; Futaki S
    J Phys Chem B; 2007 Apr; 111(14):3831-8. PubMed ID: 17388516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.