These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 9336169)
1. Wetting and capillary condensation as means of protein organization in membranes. Gil T; Sabra MC; Ipsen JH; Mouritsen OG Biophys J; 1997 Oct; 73(4):1728-41. PubMed ID: 9336169 [TBL] [Abstract][Full Text] [Related]
2. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Harroun TA; Heller WT; Weiss TM; Yang L; Huang HW Biophys J; 1999 Jun; 76(6):3176-85. PubMed ID: 10354442 [TBL] [Abstract][Full Text] [Related]
3. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Fattal DR; Ben-Shaul A Biophys J; 1993 Nov; 65(5):1795-809. PubMed ID: 8298013 [TBL] [Abstract][Full Text] [Related]
4. Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Dumas F; Sperotto MM; Lebrun MC; Tocanne JF; Mouritsen OG Biophys J; 1997 Oct; 73(4):1940-53. PubMed ID: 9336190 [TBL] [Abstract][Full Text] [Related]
5. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases. Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381 [TBL] [Abstract][Full Text] [Related]
6. Theoretical analysis of protein organization in lipid membranes. Gil T; Ipsen JH; Mouritsen OG; Sabra MC; Sperotto MM; Zuckermann MJ Biochim Biophys Acta; 1998 Nov; 1376(3):245-66. PubMed ID: 9804966 [TBL] [Abstract][Full Text] [Related]
7. A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: chain-length and chain-asymmetry dependence. Chen L; Johnson ML; Biltonen RL Biophys J; 2001 Jan; 80(1):254-70. PubMed ID: 11159399 [TBL] [Abstract][Full Text] [Related]
8. Steady-state compartmentalization of lipid membranes by active proteins. Sabra MC; Mouritsen OG Biophys J; 1998 Feb; 74(2 Pt 1):745-52. PubMed ID: 9533687 [TBL] [Abstract][Full Text] [Related]
9. Lipid composition and the lateral pressure profile in bilayers. Cantor RS Biophys J; 1999 May; 76(5):2625-39. PubMed ID: 10233077 [TBL] [Abstract][Full Text] [Related]
10. Sterol affinity for phospholipid bilayers is influenced by hydrophobic matching between lipids and transmembrane peptides. Ijäs HK; Lönnfors M; Nyholm TK Biochim Biophys Acta; 2013 Mar; 1828(3):932-7. PubMed ID: 23220446 [TBL] [Abstract][Full Text] [Related]
11. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
12. Interactions of surfactants with lipid membranes. Heerklotz H Q Rev Biophys; 2008; 41(3-4):205-64. PubMed ID: 19079805 [TBL] [Abstract][Full Text] [Related]
13. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Venturoli M; Smit B; Sperotto MM Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466 [TBL] [Abstract][Full Text] [Related]
14. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Ben-Shaul A; Ben-Tal N; Honig B Biophys J; 1996 Jul; 71(1):130-7. PubMed ID: 8804596 [TBL] [Abstract][Full Text] [Related]
15. Influence of the local anesthetic tetracaine on the phase behavior and the thermodynamic properties of phospholipid bilayers. Böttner M; Winter R Biophys J; 1993 Nov; 65(5):2041-6. PubMed ID: 8298033 [TBL] [Abstract][Full Text] [Related]
16. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. May S; Harries D; Ben-Shaul A Biophys J; 2000 Oct; 79(4):1747-60. PubMed ID: 11023883 [TBL] [Abstract][Full Text] [Related]
17. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434 [TBL] [Abstract][Full Text] [Related]
18. Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? Dumas F; Lebrun MC; Tocanne JF FEBS Lett; 1999 Sep; 458(3):271-7. PubMed ID: 10570923 [TBL] [Abstract][Full Text] [Related]
19. Cooperative dynamics of quasi-1D lipid structures and lateral transport in biological membranes. Kadantsev VN; Tverdislov VA; Yakovenko LV; Kadantsev VV Gen Physiol Biophys; 1997 Dec; 16(4):311-9. PubMed ID: 9595300 [TBL] [Abstract][Full Text] [Related]
20. Comparative effects of cholesterol and cholesterol sulfate on hydration and ordering of dimyristoylphosphatidylcholine membranes. Faure C; Tranchant JF; Dufourc EJ Biophys J; 1996 Mar; 70(3):1380-90. PubMed ID: 8785293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]