These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 9336198)
1. Measurement of nucleotide release kinetics in single skeletal muscle myofibrils during isometric and isovelocity contractions using fluorescence microscopy. Chaen S; Shirakawa I; Bagshaw CR; Sugi H Biophys J; 1997 Oct; 73(4):2033-42. PubMed ID: 9336198 [TBL] [Abstract][Full Text] [Related]
2. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog. Shirakawa I; Chaen S; Bagshaw CR; Sugi H Biophys J; 2000 Feb; 78(2):918-26. PubMed ID: 10653804 [TBL] [Abstract][Full Text] [Related]
3. Measurement of ATP turnover during shortening and lengthening of rabbit psoas myofibrils using a fluorescent ATP analog. Chaen S; Shirakawa I; Bagshaw CR; Sugi H Adv Exp Med Biol; 1998; 453():569-76. PubMed ID: 9889869 [TBL] [Abstract][Full Text] [Related]
4. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay. He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR; Ferenczi MA J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):125-48. PubMed ID: 9174999 [TBL] [Abstract][Full Text] [Related]
5. Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle. Potma EJ; Stienen GJ; Barends JP; Elzinga G J Physiol; 1994 Jan; 474(2):303-17. PubMed ID: 8006817 [TBL] [Abstract][Full Text] [Related]
6. Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas. Candau R; Kawai M J Muscle Res Cell Motil; 2011 Dec; 32(4-5):315-26. PubMed ID: 22006015 [TBL] [Abstract][Full Text] [Related]
7. Evidence that phosphate release is the rate-limiting step on the overall ATPase of psoas myofibrils prevented from shortening by chemical cross-linking. Lionne C; Iorga B; Candau R; Piroddi N; Webb MR; Belus A; Travers F; Barman T Biochemistry; 2002 Nov; 41(44):13297-308. PubMed ID: 12403632 [TBL] [Abstract][Full Text] [Related]
8. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit. Potma EJ; van Graas IA; Stienen GJ Biophys J; 1994 Dec; 67(6):2404-10. PubMed ID: 7696480 [TBL] [Abstract][Full Text] [Related]
9. Contractility of single myofibrils of rabbit skeletal muscle studied at various MgATP concentrations. Wakayama J; Yamada T Jpn J Physiol; 2000 Oct; 50(5):533-42. PubMed ID: 11120920 [TBL] [Abstract][Full Text] [Related]
10. Does phosphate release limit the ATPases of soleus myofibrils? Evidence that (A)M. ADP.Pi states predominate on the cross-bridge cycle. Iorga B; Candau R; Travers F; Barman T; Lionne C J Muscle Res Cell Motil; 2004; 25(4-5):367-78. PubMed ID: 15548866 [TBL] [Abstract][Full Text] [Related]
11. Orientation changes in myosin regulatory light chains following photorelease of ATP in skinned muscle fibers. Allen TS; Ling N; Irving M; Goldman YE Biophys J; 1996 Apr; 70(4):1847-62. PubMed ID: 8785345 [TBL] [Abstract][Full Text] [Related]
12. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas. Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889 [TBL] [Abstract][Full Text] [Related]
13. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate. He ZH; Chillingworth RK; Brune M; Corrie JE; Webb MR; Ferenczi MA J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):839-54. PubMed ID: 10358123 [TBL] [Abstract][Full Text] [Related]
14. Rate of phosphate release after photoliberation of adenosine 5'-triphosphate in slow and fast skeletal muscle fibers. He Z; Stienen GJ; Barends JP; Ferenczi MA Biophys J; 1998 Nov; 75(5):2389-401. PubMed ID: 9788934 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence polarization from isomers of tetramethylrhodamine at SH-1 in rabbit psoas muscle fibers. Berger CL; Craik JS; Trentham DR; Corrie JE; Goldman YE Biophys J; 1995 Apr; 68(4 Suppl):78S-80S. PubMed ID: 7787111 [TBL] [Abstract][Full Text] [Related]
16. Increase in ATP consumption during shortening in skinned fibres from rabbit psoas muscle: effects of inorganic phosphate. Potma EJ; Stienen GJ J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):1-12. PubMed ID: 8910191 [TBL] [Abstract][Full Text] [Related]
17. Probing the coupling of Ca2+ and rigor activation of rabbit psoas myofibrillar ATPase with ethylene glycol. Stehle R; Lionne C; Travers F; Barman T J Muscle Res Cell Motil; 1998 May; 19(4):381-92. PubMed ID: 9635281 [TBL] [Abstract][Full Text] [Related]
18. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Oiwa K; Eccleston JF; Anson M; Kikumoto M; Davis CT; Reid GP; Ferenczi MA; Corrie JE; Yamada A; Nakayama H; Trentham DR Biophys J; 2000 Jun; 78(6):3048-71. PubMed ID: 10827983 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of adenosine triphosphate hydrolysis by shortening myofibrils from rabbit psoas muscle. Ohno T; Kodama T J Physiol; 1991 Sep; 441():685-702. PubMed ID: 1816389 [TBL] [Abstract][Full Text] [Related]
20. Why choose myofibrils to study muscle myosin ATPase? Lionne C; Iorga B; Candau R; Travers F J Muscle Res Cell Motil; 2003; 24(2-3):139-48. PubMed ID: 14609025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]