These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 9336216)

  • 1. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy.
    Klingler J; Friedrich T
    Biophys J; 1997 Oct; 73(4):2195-200. PubMed ID: 9336216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ornithodorin-thrombin crystal structure, a key to the TAP enigma?
    van de Locht A; Stubbs MT; Bode W; Friedrich T; Bollschweiler C; Höffken W; Huber R
    EMBO J; 1996 Nov; 15(22):6011-7. PubMed ID: 8947023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of thrombin exosite I, by ligand-directed covalent modification.
    Yegneswaran S; Tiefenbrunn TK; Fernández JA; Dawson PE
    J Thromb Haemost; 2007 Oct; 5(10):2062-9. PubMed ID: 17883702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bothrojaracin: a potent two-site-directed thrombin inhibitor.
    Arocas V; Zingali RB; Guillin MC; Bon C; Jandrot-Perrus M
    Biochemistry; 1996 Jul; 35(28):9083-9. PubMed ID: 8703912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes.
    Tasset DM; Kubik MF; Steiner W
    J Mol Biol; 1997 Oct; 272(5):688-98. PubMed ID: 9368651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric changes of thrombin catalytic site induced by interaction of bothrojaracin with anion-binding exosites I and II.
    Monteiro RQ; Rapôso JG; Wisner A; Guimarães JA; Bon C; Zingali RB
    Biochem Biophys Res Commun; 1999 Sep; 262(3):819-22. PubMed ID: 10471408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonpolar interactions of thrombin S' subsites with its bivalent inhibitor: methyl scan of the inhibitor linker.
    Slon-Usakiewicz JJ; Purisima E; Tsuda Y; Sulea T; Pedyczak A; Féthière J; Cygler M; Konishi Y
    Biochemistry; 1997 Nov; 36(44):13494-502. PubMed ID: 9354617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural differences in active site-labeled thrombin complexes with hirudin isoinhibitors.
    Rowand JK; Berliner LJ
    J Protein Chem; 1992 Oct; 11(5):483-8. PubMed ID: 1333213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtle differences in active site structure between bovine and human thrombins: ESR and fluorescence studies.
    Nienaber VL; Berliner LJ
    Thromb Haemost; 1991 Jan; 65(1):40-5. PubMed ID: 1850875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potent bivalent thrombin inhibitors: replacement of the scissile peptide bond at P(1)-P(1)' with arginyl ketomethylene isosteres.
    Steinmetzer T; Zhu BY; Konishi Y
    J Med Chem; 1999 Aug; 42(16):3109-15. PubMed ID: 10447955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron spin resonance and fluorescence studies of the conformational environment of the thiol groups of thrombospondin: interactions with thrombin.
    Sankarapandi S; Walz DA; Zafar RS; Berliner LJ
    Biochemistry; 1995 Aug; 34(33):10491-6. PubMed ID: 7654703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid sequence and structure modeling of savignin, a thrombin inhibitor from the tick, Ornithodoros savignyi.
    Mans BJ; Louw AI; Neitz AW
    Insect Biochem Mol Biol; 2002 Jul; 32(7):821-8. PubMed ID: 12044499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fluorescent radioiodinated oligonucleotidic photoaffinity probe for protein labeling: synthesis and photolabeling of thrombin.
    Berens C; Courtoy PJ; Sonveaux E
    Bioconjug Chem; 1999; 10(1):56-61. PubMed ID: 9893964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy.
    Gregor I; Enderlein J
    Photochem Photobiol Sci; 2007 Jan; 6(1):13-8. PubMed ID: 17200732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a serpin-enzyme complex probed by cysteine substitutions and fluorescence spectroscopy.
    Ludeman JP; Whisstock JC; Hopkins PC; Le Bonniec BF; Bottomley SP
    Biophys J; 2001 Jan; 80(1):491-7. PubMed ID: 11159419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches.
    Bhunia SS; Roy KK; Saxena AK
    J Chem Inf Model; 2011 Aug; 51(8):1966-85. PubMed ID: 21761917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thrombin specificity.
    Guillin MC; Bezeaud A; Bouton MC; Jandrot-Perrus M
    Thromb Haemost; 1995 Jul; 74(1):129-33. PubMed ID: 8578445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailor-made dyes for fluorescence correlation spectroscopy (FCS).
    Czerney P; Lehmann F; Wenzel M; Buschmann V; Dietrich A; Mohr GJ
    Biol Chem; 2001 Mar; 382(3):495-8. PubMed ID: 11347900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions.
    Yang R; Tang Z; Yan J; Kang H; Kim Y; Zhu Z; Tan W
    Anal Chem; 2008 Oct; 80(19):7408-13. PubMed ID: 18771233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrate-lectin interaction assay by fluorescence correlation spectroscopy using fluorescence-labeled glycosylasparagines.
    Mizuno M
    Methods Mol Biol; 2014; 1200():215-21. PubMed ID: 25117238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.