These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9336844)

  • 1. Oligomerization properties of GCN4 leucine zipper e and g position mutants.
    Zeng X; Zhu H; Lashuel HA; Hu JC
    Protein Sci; 1997 Oct; 6(10):2218-26. PubMed ID: 9336844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the roles of residues at the e and g positions of the GCN4 leucine zipper by combinatorial mutagenesis.
    Hu JC; Newell NE; Tidor B; Sauer RT
    Protein Sci; 1993 Jul; 2(7):1072-84. PubMed ID: 8102921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two pairs of oppositely charged amino acids from Jun and Fos confer heterodimerization to GCN4 leucine zipper.
    John M; Briand JP; Granger-Schnarr M; Schnarr M
    J Biol Chem; 1994 Jun; 269(23):16247-53. PubMed ID: 8206929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An engineered leucine zipper a position mutant with an unusual three-state unfolding pathway.
    Zhu H; Celinski SA; Scholtz JM; Hu JC
    Protein Sci; 2001 Jan; 10(1):24-33. PubMed ID: 11266591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants.
    Harbury PB; Zhang T; Kim PS; Alber T
    Science; 1993 Nov; 262(5138):1401-7. PubMed ID: 8248779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimerization specificity in HIV-1 gp41: analysis with a GCN4 leucine zipper model.
    Shu W; Ji H; Lu M
    Biochemistry; 1999 Apr; 38(17):5378-85. PubMed ID: 10220324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions.
    Hu JC; O'Shea EK; Kim PS; Sauer RT
    Science; 1990 Dec; 250(4986):1400-3. PubMed ID: 2147779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buried polar residues and structural specificity in the GCN4 leucine zipper.
    Gonzalez L; Woolfson DN; Alber T
    Nat Struct Biol; 1996 Dec; 3(12):1011-8. PubMed ID: 8946854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of an isoleucine-zipper trimer.
    Harbury PB; Kim PS; Alber T
    Nature; 1994 Sep; 371(6492):80-3. PubMed ID: 8072533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short, hydrophobic, alanine-based proteins based on the basic region/leucine zipper protein motif: overcoming inclusion body formation and protein aggregation during overexpression, purification, and renaturation.
    Lajmi AR; Wallace TR; Shin JA
    Protein Expr Purif; 2000 Apr; 18(3):394-403. PubMed ID: 10733895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buried asparagines determine the dimerization specificities of leucine zipper mutants.
    Zeng X; Herndon AM; Hu JC
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3673-8. PubMed ID: 9108036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptability at the protein-DNA interface is an important aspect of sequence recognition by bZIP proteins.
    Kim J; Tzamarias D; Ellenberger T; Harrison SC; Struhl K
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4513-7. PubMed ID: 8506292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacement of invariant bZip residues within the basic region of the yeast transcriptional activator GCN4 can change its DNA binding specificity.
    Suckow M; Schwamborn K; Kisters-Woike B; von Wilcken-Bergmann B; Müller-Hill B
    Nucleic Acids Res; 1994 Oct; 22(21):4395-404. PubMed ID: 7971270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization of leucine zippers analyzed by random selection.
    Pu WT; Struhl K
    Nucleic Acids Res; 1993 Sep; 21(18):4348-55. PubMed ID: 8414991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intrahelical salt bridge within the trigger site stabilizes the GCN4 leucine zipper.
    Kammerer RA; Jaravine VA; Frank S; Schulthess T; Landwehr R; Lustig A; Garcia-Echeverria C; Alexandrescu AT; Engel J; Steinmetz MO
    J Biol Chem; 2001 Apr; 276(17):13685-8. PubMed ID: 11134036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing accuracy of computer-built models: a study based on leucine zipper GCN4 structure.
    Shen L; Bruccoleri RE; Krystek S; Novotny J
    Biophys J; 1996 Mar; 70(3):1096-104. PubMed ID: 8785269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper.
    Lumb KJ; Kim PS
    Science; 1995 Apr; 268(5209):436-9. PubMed ID: 7716550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure.
    Mittl PR; Deillon C; Sargent D; Liu N; Klauser S; Thomas RM; Gutte B; Grütter MG
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2562-6. PubMed ID: 10716989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The leucine zipper symmetrically positions the adjacent basic regions for specific DNA binding.
    Pu WT; Struhl K
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6901-5. PubMed ID: 1871104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.