BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9337131)

  • 1. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos.
    Pérez-Pomares JM; Macías D; García-Garrido L; Muñoz-Chápuli R
    Dev Dyn; 1997 Oct; 210(2):96-105. PubMed ID: 9337131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study.
    Pérez-Pomares JM; Macías D; García-Garrido L; Muñoz-Chápuli R
    Dev Biol; 1998 Aug; 200(1):57-68. PubMed ID: 9698456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epicardium as a source of mesenchyme for the developing heart.
    Muñoz-Chápuli R; Pérez-Pomares JM; Macías D; García-Garrido L; Carmona R; González-Iriarte M
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):187-96. PubMed ID: 11729954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart.
    Macías D; Pérez-Pomares JM; García-Garrido L; Carmona R; Muñoz-Chápuli R
    Anat Embryol (Berl); 1998 Oct; 198(4):307-15. PubMed ID: 9764544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium.
    Männer J
    Anat Rec; 1999 Jun; 255(2):212-26. PubMed ID: 10359522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue.
    Wunsch AM; Little CD; Markwald RR
    Dev Biol; 1994 Oct; 165(2):585-601. PubMed ID: 7958424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunolocalization of the vascular endothelial growth factor receptor-2 in the subepicardial mesenchyme of hamster embryos: identification of the coronary vessel precursors.
    Pérez-Pomares JM; Macías D; García-Garrido L; Munõz-Chápuli R
    Histochem J; 1998 Sep; 30(9):627-34. PubMed ID: 9870763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of subepicardial cells in rat embryos.
    Van den Eijnde SM; Wenink AC; Vermeij-Keers C
    Anat Rec; 1995 May; 242(1):96-102. PubMed ID: 7604987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development.
    Morabito CJ; Dettman RW; Kattan J; Collier JM; Bristow J
    Dev Biol; 2001 Jun; 234(1):204-15. PubMed ID: 11356030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton.
    Molin DG; Bartram U; Van der Heiden K; Van Iperen L; Speer CP; Hierck BP; Poelmann RE; Gittenberger-de-Groot AC
    Dev Dyn; 2003 Jul; 227(3):431-44. PubMed ID: 12815630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart.
    Dettman RW; Denetclaw W; Ordahl CP; Bristow J
    Dev Biol; 1998 Jan; 193(2):169-81. PubMed ID: 9473322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium.
    Vrancken Peeters MP; Gittenberger-de Groot AC; Mentink MM; Poelmann RE
    Anat Embryol (Berl); 1999 Apr; 199(4):367-78. PubMed ID: 10195310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development.
    Poelmann RE; Lie-Venema H; Gittenberger-de Groot AC
    Tex Heart Inst J; 2002; 29(4):255-61. PubMed ID: 12484609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs).
    Pérez-Pomares JM; Phelps A; Sedmerova M; Carmona R; González-Iriarte M; Muñoz-Chápuli R; Wessels A
    Dev Biol; 2002 Jul; 247(2):307-26. PubMed ID: 12086469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on the formation of the epicardium in chick embryos.
    Männer J
    Anat Embryol (Berl); 1993 Mar; 187(3):281-9. PubMed ID: 8470828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origin of the epicardium and the embryonic myocardial circulation in the mouse.
    Virágh S; Challice CE
    Anat Rec; 1981 Sep; 201(1):157-68. PubMed ID: 7305017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium.
    Pérez-Pomares JM; Phelps A; Sedmerova M; Wessels A
    Dev Dyn; 2003 May; 227(1):56-68. PubMed ID: 12701099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell surface glycoconjugates and the extracellular matrix of the developing mouse embryo epicardium.
    Kálmán F; Virágh S; Módis L
    Anat Embryol (Berl); 1995 May; 191(5):451-64. PubMed ID: 7625614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epicardial formation in staged human embryos.
    Hirakow R
    Kaibogaku Zasshi; 1992 Oct; 67(5):616-22. PubMed ID: 1462754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells.
    Guadix JA; Carmona R; Muñoz-Chápuli R; Pérez-Pomares JM
    Dev Dyn; 2006 Apr; 235(4):1014-26. PubMed ID: 16456846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.