These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 9337214)

  • 1. Preservation of myocyte contractile function after hyperthermic cardioplegic arrest by activation of ATP-sensitive potassium channels.
    Dorman BH; Hebbar L; Hinton RB; Roy RC; Spinale FG
    Circulation; 1997 Oct; 96(7):2376-84. PubMed ID: 9337214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channel opener-augmented cardioplegia: protection of myocyte contractility with chronic left ventricular dysfunction.
    Dorman BH; Hebbar L; Clair MJ; Hinton RB; Roy RC; Spinale FG
    Circulation; 1997 Nov; 96(9 Suppl):II-253-9. PubMed ID: 9386107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal relation of ATP-sensitive potassium-channel activation and contractility before cardioplegia.
    Hebbar L; Houck WV; Zellner JL; Dorman BH; Spinale FG
    Ann Thorac Surg; 1998 Apr; 65(4):1077-82. PubMed ID: 9564931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributory mechanisms for the beneficial effects of myocyte preconditioning during cardioplegic arrest.
    O SJ; Zellner JL; Cox MH; Hebbar L; Brothers TE; Mukherjee R; Tempel GE; Dorman BH; Crawford FA; Spinale FG
    Circulation; 1996 Nov; 94(9 Suppl):II389-97. PubMed ID: 8901780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and molecular therapeutic targets for treatment of contractile dysfunction after cardioplegic arrest.
    Spinale FG
    Ann Thorac Surg; 1999 Nov; 68(5):1934-41. PubMed ID: 10585107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive potassium channel activation before cardioplegia. Effects on ventricular and myocyte function.
    Dorman BH; Hebbar L; Zellner JL; New RB; Houck WV; Acsell J; Nettles C; Hendrick JW; Sampson AP; Mukherjee R; Spinale FG
    Circulation; 1998 Nov; 98(19 Suppl):II176-83. PubMed ID: 9852901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normothermic versus hypothermic hyperkalemic cardioplegia: effects on myocyte contractility.
    Houck WV; Kribbs SB; Zellner JL; Doscher MA; Joshi JD; Crawford FA; Spinale FG
    Ann Thorac Surg; 1998 May; 65(5):1279-83. PubMed ID: 9594851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of myocyte contractile function after hypothermic, hyperkalemic cardioplegic arrest with 2, 3-butanedione monoxime.
    Dorman BH; Cavallo MJ; Hinton RB; Roy RC; Spinale FG
    J Thorac Cardiovasc Surg; 1996 Mar; 111(3):621-9. PubMed ID: 8601977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pretreatment with 3,5,3'triiodo-L-thyronine (T3). Effects on myocyte contractile function after hypothermic cardioplegic arrest and rewarming.
    Walker JD; Crawford FA; Spinale FG
    J Thorac Cardiovasc Surg; 1995 Aug; 110(2):315-27. PubMed ID: 7637349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myocyte endothelin exposure during cardioplegic arrest exacerbates contractile dysfunction after reperfusion.
    Dorman BH; New RB; Bond BR; Mukherjee R; Mukhin YV; McElmurray JH; Spinale FG
    Anesth Analg; 2000 May; 90(5):1080-5. PubMed ID: 10781456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocyte contractile responsiveness after hypothermic, hyperkalemic cardioplegic arrest. Disparity between exogenous calcium and beta-adrenergic stimulation.
    Cavallo MJ; Dorman BH; Spinale FG; Roy RC
    Anesthesiology; 1995 Apr; 82(4):926-39. PubMed ID: 7717565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aprikalim reduces the Na+-Ca2+ exchange outward current enhanced by hyperkalemia in rat ventricular myocytes.
    Li HY; Wu S; He GW; Wong TM
    Ann Thorac Surg; 2002 Apr; 73(4):1253-9; discussion 1259-60. PubMed ID: 11996269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct effects of oxygenated crystalloid or blood cardioplegia on isolated myocyte contractile function.
    Handy JR; Dorman BH; Cavallo MJ; Hinton RB; Roy RC; Crawford FA; Spinale FG
    J Thorac Cardiovasc Surg; 1996 Oct; 112(4):1064-72. PubMed ID: 8873734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocyte contractility with caspase inhibition and simulated hyperkalemic cardioplegic arrest.
    Mukherjee R; Yarbrough WM; Reese ES; Leiser JS; Sample JA; Mingoia JT; Hardin AE; Stroud RE; McLean JE; Hendrick JW; Spinale FG
    Ann Thorac Surg; 2004 May; 77(5):1684-9; discussion 1689-90. PubMed ID: 15111166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase C activation before cardioplegic arrest: beneficial effects on myocyte contractility.
    O SJ; Cox MH; Crawford FA; Spinale FG
    J Thorac Cardiovasc Surg; 1997 Oct; 114(4):651-9. PubMed ID: 9338652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and interactive effects of cardioplegic arrest and protamine on myocyte contractility.
    O SJ; Cox MH; Mukherjee R; Clair MJ; Crawford FA; Spinale FG
    Ann Thorac Surg; 1996 Aug; 62(2):489-94. PubMed ID: 8694611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial effects of myocyte preconditioning on contractile processes after cardioplegic arrest.
    Zellner JL; Hebbar L; Crawford FA; Mukherjee R; Spinale FG
    Ann Thorac Surg; 1996 Feb; 61(2):558-64. PubMed ID: 8572767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypothermic potassium cardioplegia impairs myocyte recovery of contractility and inotropy.
    Handy JR; Spinale FG; Mukherjee R; Crawford FA
    J Thorac Cardiovasc Surg; 1994 Apr; 107(4):1050-8. PubMed ID: 8159026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental differences in myocyte contractile response after cardioplegic arrest.
    McMahon WS; Gillette PC; Hinton RB; Stratton JR; Crawford FA; Spinale FG
    J Thorac Cardiovasc Surg; 1996 Jun; 111(6):1257-66. PubMed ID: 8642828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caspase inhibition attenuates contractile dysfunction following cardioplegic arrest and rewarming in the setting of left ventricular failure.
    Yarbrough WM; Mukherjee R; Squires CE; Reese ES; Leiser JS; Stroud RE; Sample JA; Hendrick JW; Mingoia JT; McLean JE; Hardin AE; Dowdy KB; Spinale FG
    J Cardiovasc Pharmacol; 2004 Dec; 44(6):645-50. PubMed ID: 15550782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.