These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9337489)

  • 1. Membrane-linked systems preventing superoxide formation.
    Skulachev VP
    Biosci Rep; 1997 Jun; 17(3):347-66. PubMed ID: 9337489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell.
    Skulachev VP
    FEBS Lett; 1996 Nov; 397(1):7-10. PubMed ID: 8941703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat.
    Armstrong JS; Whiteman M; Yang H; Jones DP
    Bioessays; 2004 Aug; 26(8):894-900. PubMed ID: 15273991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria.
    Akopova OV; Kolchynskayia LY; Nosar' VY; Smyrnov AN; Malisheva MK; Man'kovskaia YN; Sahach VF
    Ukr Biokhim Zh (1999); 2011; 83(6):46-55. PubMed ID: 22364018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells.
    Sarre A; Gabrielli J; Vial G; Leverve XM; Assimacopoulos-Jeannet F
    Free Radic Biol Med; 2012 Jan; 52(1):142-50. PubMed ID: 22064362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
    Jezek P; Hlavatá L
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide released into the mitochondrial matrix.
    Meany DL; Poe BG; Navratil M; Moraes CT; Arriaga EA
    Free Radic Biol Med; 2006 Sep; 41(6):950-9. PubMed ID: 16934678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide production by the mitochondrial respiratory chain.
    Turrens JF
    Biosci Rep; 1997 Feb; 17(1):3-8. PubMed ID: 9171915
    [No Abstract]   [Full Text] [Related]  

  • 11. Vitamin E regulation of mitochondrial superoxide generation.
    Chow CK
    Biol Signals Recept; 2001; 10(1-2):112-24. PubMed ID: 11223644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of heat stress-induced production of mitochondrial reactive oxygen species on NADPH oxidase and heme oxygenase-1 mRNA levels in avian muscle cells.
    Kikusato M; Yoshida H; Furukawa K; Toyomizu M
    J Therm Biol; 2015 Aug; 52():8-13. PubMed ID: 26267493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide activates mitochondrial uncoupling proteins.
    Echtay KS; Roussel D; St-Pierre J; Jekabsons MB; Cadenas S; Stuart JA; Harper JA; Roebuck SJ; Morrison A; Pickering S; Clapham JC; Brand MD
    Nature; 2002 Jan; 415(6867):96-9. PubMed ID: 11780125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release.
    Madesh M; Hajnóczky G
    J Cell Biol; 2001 Dec; 155(6):1003-15. PubMed ID: 11739410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ROS metabolism: modulation by uncoupling proteins.
    Casteilla L; Rigoulet M; Pénicaud L
    IUBMB Life; 2001; 52(3-5):181-8. PubMed ID: 11798031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide flashes, reactive oxygen species, and the mitochondrial permeability transition pore: potential implications for hematopoietic stem cell function.
    Mantel C; Messina-Graham SV; Broxmeyer HE
    Curr Opin Hematol; 2011 Jul; 18(4):208-13. PubMed ID: 21537169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-course effect of high-glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells.
    Al-Kafaji G; Sabry MA; Skrypnyk C
    Cell Biol Int; 2016 Jan; 40(1):36-48. PubMed ID: 26251331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial ascorbic acid prevents mitochondrial O₂·⁻ formation, an event critical for U937 cell apoptosis induced by arsenite through both autophagic-dependent and independent mechanisms.
    Guidarelli A; Carloni S; Balduini W; Fiorani M; Cantoni O
    Biofactors; 2016; 42(2):190-200. PubMed ID: 26893200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production.
    Aronis A; Komarnitsky R; Shilo S; Tirosh O
    Antioxid Redox Signal; 2002 Aug; 4(4):647-54. PubMed ID: 12230877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.