BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9337489)

  • 1. Membrane-linked systems preventing superoxide formation.
    Skulachev VP
    Biosci Rep; 1997 Jun; 17(3):347-66. PubMed ID: 9337489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell.
    Skulachev VP
    FEBS Lett; 1996 Nov; 397(1):7-10. PubMed ID: 8941703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat.
    Armstrong JS; Whiteman M; Yang H; Jones DP
    Bioessays; 2004 Aug; 26(8):894-900. PubMed ID: 15273991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria.
    Akopova OV; Kolchynskayia LY; Nosar' VY; Smyrnov AN; Malisheva MK; Man'kovskaia YN; Sahach VF
    Ukr Biokhim Zh (1999); 2011; 83(6):46-55. PubMed ID: 22364018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells.
    Sarre A; Gabrielli J; Vial G; Leverve XM; Assimacopoulos-Jeannet F
    Free Radic Biol Med; 2012 Jan; 52(1):142-50. PubMed ID: 22064362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
    Jezek P; Hlavatá L
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide released into the mitochondrial matrix.
    Meany DL; Poe BG; Navratil M; Moraes CT; Arriaga EA
    Free Radic Biol Med; 2006 Sep; 41(6):950-9. PubMed ID: 16934678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide production by the mitochondrial respiratory chain.
    Turrens JF
    Biosci Rep; 1997 Feb; 17(1):3-8. PubMed ID: 9171915
    [No Abstract]   [Full Text] [Related]  

  • 11. Vitamin E regulation of mitochondrial superoxide generation.
    Chow CK
    Biol Signals Recept; 2001; 10(1-2):112-24. PubMed ID: 11223644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of heat stress-induced production of mitochondrial reactive oxygen species on NADPH oxidase and heme oxygenase-1 mRNA levels in avian muscle cells.
    Kikusato M; Yoshida H; Furukawa K; Toyomizu M
    J Therm Biol; 2015 Aug; 52():8-13. PubMed ID: 26267493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide activates mitochondrial uncoupling proteins.
    Echtay KS; Roussel D; St-Pierre J; Jekabsons MB; Cadenas S; Stuart JA; Harper JA; Roebuck SJ; Morrison A; Pickering S; Clapham JC; Brand MD
    Nature; 2002 Jan; 415(6867):96-9. PubMed ID: 11780125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release.
    Madesh M; Hajnóczky G
    J Cell Biol; 2001 Dec; 155(6):1003-15. PubMed ID: 11739410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ROS metabolism: modulation by uncoupling proteins.
    Casteilla L; Rigoulet M; Pénicaud L
    IUBMB Life; 2001; 52(3-5):181-8. PubMed ID: 11798031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide flashes, reactive oxygen species, and the mitochondrial permeability transition pore: potential implications for hematopoietic stem cell function.
    Mantel C; Messina-Graham SV; Broxmeyer HE
    Curr Opin Hematol; 2011 Jul; 18(4):208-13. PubMed ID: 21537169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-course effect of high-glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells.
    Al-Kafaji G; Sabry MA; Skrypnyk C
    Cell Biol Int; 2016 Jan; 40(1):36-48. PubMed ID: 26251331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial ascorbic acid prevents mitochondrial O₂·⁻ formation, an event critical for U937 cell apoptosis induced by arsenite through both autophagic-dependent and independent mechanisms.
    Guidarelli A; Carloni S; Balduini W; Fiorani M; Cantoni O
    Biofactors; 2016; 42(2):190-200. PubMed ID: 26893200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production.
    Aronis A; Komarnitsky R; Shilo S; Tirosh O
    Antioxid Redox Signal; 2002 Aug; 4(4):647-54. PubMed ID: 12230877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.