These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
813 related articles for article (PubMed ID: 9337622)
1. Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a. Hoebeke M; Schuitmaker HJ; Jannink LE; Dubbelman TM; Jakobs A; Van de Vorst A Photochem Photobiol; 1997 Oct; 66(4):502-8. PubMed ID: 9337622 [TBL] [Abstract][Full Text] [Related]
2. Production of singlet oxygen-derived hydroxyl radical adducts during merocyanine-540-mediated photosensitization: analysis by ESR-spin trapping and HPLC with electrochemical detection. Feix JB; Kalyanaraman B Arch Biochem Biophys; 1991 Nov; 291(1):43-51. PubMed ID: 1656888 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous production of superoxide radical and singlet oxygen by sulphonated chloroaluminum phthalocyanine incorporated in human low-density lipoproteins: implications for photodynamic therapy. Martins J; Almeida L; Laranjinha J Photochem Photobiol; 2004; 80(2):267-73. PubMed ID: 15362945 [TBL] [Abstract][Full Text] [Related]
4. Production of the free radicals O2.- and .OH by irradiation of the photosensitizer zinc(II) phthalocyanine. Hadjur C; Wagnières G; Ihringer F; Monnier P; van den Bergh H J Photochem Photobiol B; 1997 Apr; 38(2-3):196-202. PubMed ID: 9203381 [TBL] [Abstract][Full Text] [Related]
5. Electron spin resonance studies on photosensitized formation of hydroxyl radical by C-phycocyanin from Spirulina platensis. Zhang S; Xie J; Zhang J; Zhao J; Jiang L Biochim Biophys Acta; 1999 Jan; 1426(1):205-11. PubMed ID: 9878738 [TBL] [Abstract][Full Text] [Related]
6. Hydroxyl radical generation caused by the reaction of singlet oxygen with a spin trap, DMPO, increases significantly in the presence of biological reductants. Nishizawa C; Takeshita K; Ueda J; Mizuno M; Suzuki KT; Ozawa T Free Radic Res; 2004 Apr; 38(4):385-92. PubMed ID: 15190935 [TBL] [Abstract][Full Text] [Related]
7. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR). Han SK; Hwang TM; Yoon Y; Kang JW Chemosphere; 2011 Aug; 84(8):1095-101. PubMed ID: 21561642 [TBL] [Abstract][Full Text] [Related]
8. The haemolytic reactions of 1-acetyl-2-phenylhydrazine and hydrazine: a spin trapping study. Thornalley PJ Chem Biol Interact; 1984 Aug; 50(3):339-49. PubMed ID: 6086164 [TBL] [Abstract][Full Text] [Related]
9. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical. Britigan BE; Roeder TL; Buettner GR Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450 [TBL] [Abstract][Full Text] [Related]
10. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Yim MB; Chock PB; Stadtman ER Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216 [TBL] [Abstract][Full Text] [Related]
11. A mechanism for primaquine mediated oxidation of NADPH in red blood cells. Thornalley PJ; Stern A; Bannister JV Biochem Pharmacol; 1983 Dec; 32(23):3571-5. PubMed ID: 6316988 [TBL] [Abstract][Full Text] [Related]
12. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study. Karoui H; Hogg N; Joseph J; Kalyanaraman B Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684 [TBL] [Abstract][Full Text] [Related]
13. Ultraviolet irradiation of titanium dioxide in aqueous dispersion generates singlet oxygen. Konaka R; Kasahara E; Dunlap WC; Yamamoto Y; Chien KC; Inoue M Redox Rep; 2001; 6(5):319-25. PubMed ID: 11778850 [TBL] [Abstract][Full Text] [Related]
14. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH. Rashba-Step J; Turro NJ; Cederbaum AI Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968 [TBL] [Abstract][Full Text] [Related]
15. Spin trap studies on the decomposition of peroxynitrite. Lemercier JN; Squadrito GL; Pryor WA Arch Biochem Biophys; 1995 Aug; 321(1):31-9. PubMed ID: 7639532 [TBL] [Abstract][Full Text] [Related]
16. Hydroxyl radical generation by red tide algae. Oda T; Akaike T; Sato K; Ishimatsu A; Takeshita S; Muramatsu T; Maeda H Arch Biochem Biophys; 1992 Apr; 294(1):38-43. PubMed ID: 1312810 [TBL] [Abstract][Full Text] [Related]
17. Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery. Mizukawa H; Okabe E Br J Pharmacol; 1997 May; 121(1):63-70. PubMed ID: 9146888 [TBL] [Abstract][Full Text] [Related]
18. Formation of reactive oxygen species and DNA strand breakage during interaction of chromium (III) and hydrogen peroxide in vitro: evidence for a chromium (III)-mediated Fenton-like reaction. Tsou TC; Yang JL Chem Biol Interact; 1996 Dec; 102(3):133-53. PubMed ID: 9021167 [TBL] [Abstract][Full Text] [Related]
19. Quantification of singlet oxygen from hematoporphyrin derivative by electron spin resonance. Ando T; Yoshikawa T; Tanigawa T; Kohno M; Yoshida N; Kondo M Life Sci; 1997; 61(19):1953-9. PubMed ID: 9364200 [TBL] [Abstract][Full Text] [Related]
20. The cellular-induced decay of DMPO spin adducts of .OH and .O2. Samuni A; Samuni A; Swartz HM Free Radic Biol Med; 1989; 6(2):179-83. PubMed ID: 2540066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]