BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9337627)

  • 1. An insertion or deletion in the extramembrane loop connecting helices E and F of archaerhodopsin-1 affects in vitro refolding and slows the photocycle.
    Sugiyama Y; Koyanagi T; Yamada N; Mukohata Y
    Photochem Photobiol; 1997 Oct; 66(4):541-6. PubMed ID: 9337627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of carboxyl group modification on the chromophore regeneration of archaeopsin-1 and bacterioopsin.
    Sugiyama Y; Fujii K; Mukohata Y
    J Biochem; 1999 Jun; 125(6):1144-50. PubMed ID: 10348918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual roles of DMPC and CHAPS in the refolding of bacterial opsins in vitro.
    Sugiyama Y; Mukohata Y
    J Biochem; 1996 Jun; 119(6):1143-9. PubMed ID: 8827450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that bilayer bending rigidity affects membrane protein folding.
    Booth PJ; Riley ML; Flitsch SL; Templer RH; Farooq A; Curran AR; Chadborn N; Wright P
    Biochemistry; 1997 Jan; 36(1):197-203. PubMed ID: 8993334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of bacterio-opsin in Escherichia coli as a water-soluble fusion to maltose binding protein: efficient regeneration of the fusion protein and selective cleavage with trypsin.
    Chen GQ; Gouaux JE
    Protein Sci; 1996 Mar; 5(3):456-67. PubMed ID: 8868482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of transmembrane helix packing on tryptophan and tyrosine environments in detergent-solubilized bacterio-opsin.
    Renthal R; Haas P
    J Protein Chem; 1996 Apr; 15(3):281-9. PubMed ID: 8804576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of archaerhodopsin-1 and -2: Common structural motif in archaeal light-driven proton pumps.
    Enami N; Yoshimura K; Murakami M; Okumura H; Ihara K; Kouyama T
    J Mol Biol; 2006 May; 358(3):675-85. PubMed ID: 16540121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dependence of the absorption spectra and photochemical transformations of the archaerhodopsins.
    Lukashev EP; Govindjee R; Kono M; Ebrey TG; Sugiyama Y; Mukohata Y
    Photochem Photobiol; 1994 Jul; 60(1):69-75. PubMed ID: 8073078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaerhodopsin-2, from Halobacterium sp. aus-2 further reveals essential amino acid residues for light-driven proton pumps.
    Uegaki K; Sugiyama Y; Mukohata Y
    Arch Biochem Biophys; 1991 Apr; 286(1):107-10. PubMed ID: 1654776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.
    Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of bacteriorhodopsin in mixed micelles.
    Renthal R; Hannapel C; Nguyen AS; Haas P
    Biochim Biophys Acta; 1990 Nov; 1030(1):176-81. PubMed ID: 2265188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered membrane insertion of an archaeal opsin in vivo.
    Dale H; Angevine CM; Krebs MP
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7847-52. PubMed ID: 10869439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Met-145 is a key residue in the dark adaptation of bacteriorhodopsin homologs.
    Ihara K; Amemiya T; Miyashita Y; Mukohata Y
    Biophys J; 1994 Sep; 67(3):1187-91. PubMed ID: 7811932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family.
    Soppa J; Duschl J; Oesterhelt D
    J Bacteriol; 1993 May; 175(9):2720-6. PubMed ID: 8478333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The primary structures of helices A to G of three new bacteriorhodopsin-like retinal proteins.
    Otomo J; Urabe Y; Tomioka H; Sasabe H
    J Gen Microbiol; 1992 Nov; 138(11):2389-96. PubMed ID: 1479357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary and tertiary structure of bacteriorhodopsin in the SDS denatured state.
    Krishnamani V; Hegde BG; Langen R; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1051-60. PubMed ID: 22242919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archae-opsin expressed in Escherichia coli and its conversion to purple pigment in vitro.
    Sugiyama Y; Mukohata Y
    J Biochem; 1994 May; 115(5):1021-6. PubMed ID: 7961588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.