These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 9338416)

  • 1. Trauma-induced changes of skeletal muscle membrane: decreased K+ and increased Na+ permeability.
    Hong SJ; Chang CC
    J Appl Physiol (1985); 1997 Oct; 83(4):1096-103. PubMed ID: 9338416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperpolarization of denervated skeletal muscle by lemakalim and its antagonism by glybenclamide and tolbutamide.
    Hong SJ; Chang CC
    J Pharmacol Exp Ther; 1991 Nov; 259(2):932-8. PubMed ID: 1941637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle.
    Balog EM; Fitts RH
    J Appl Physiol (1985); 1996 Aug; 81(2):679-85. PubMed ID: 8872634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell.
    Koh SD; Bradley KK; Rae MG; Keef KD; Horowitz B; Sanders KM
    Biophys J; 1998 Oct; 75(4):1793-800. PubMed ID: 9746521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretch-activated ion channels contribute to membrane depolarization after eccentric contractions.
    McBride TA; Stockert BW; Gorin FA; Carlsen RC
    J Appl Physiol (1985); 2000 Jan; 88(1):91-101. PubMed ID: 10642367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
    Sejersted OM; Sjøgaard G
    Physiol Rev; 2000 Oct; 80(4):1411-81. PubMed ID: 11015618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of cyclopiazonic acid-mediated contracture of mouse diaphragm after denervation.
    Hong SJ; Liang HC; Shen CJ
    Pharmacology; 2005 Mar; 73(4):180-9. PubMed ID: 15604590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane permeability during low potassium depolarization in sheep cardiac Purkinje fibers.
    Lee CO; Fozzard HA
    Am J Physiol; 1979 Sep; 237(3):C156-65. PubMed ID: 474744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium currents in octopus cells of the mammalian cochlear nucleus.
    Bal R; Oertel D
    J Neurophysiol; 2001 Nov; 86(5):2299-311. PubMed ID: 11698520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parapodial swim muscle in Aplysia brasiliana. I. Voltage-gated membrane currents in isolated muscle fibers.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1517-30. PubMed ID: 8890271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caffeine-induced depolarization in amphibian skeletal muscle fibres: role of Na+/Ca2+ exchange and K+ release.
    Kotsias BA; Venosa RA
    Acta Physiol Scand; 2001 Apr; 171(4):459-66. PubMed ID: 11421861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cromakalim and lemakalim on slow waves and membrane currents in colonic smooth muscle.
    Post JM; Stevens RJ; Sanders KM; Hume JR
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C375-82. PubMed ID: 1996617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In skeletal muscle the relaxation of the resting membrane potential induced by K(+) permeability changes depends on Cl(-) transport.
    Geukes Foppen RJ
    Pflugers Arch; 2004 Jan; 447(4):416-25. PubMed ID: 14648122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.