BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9339309)

  • 1. Health impacts of large releases of radionuclides. Transport and processes in freshwater ecosystems.
    Håkanson L
    Ciba Found Symp; 1997; 203():46-64; discussion 64-7, 89-93. PubMed ID: 9339309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Test and application of a general process-based dynamic coastal mass-balance model for contaminants using data for radionuclides in the Dnieper-Bug estuary.
    Håkanson L; Lindgren D
    Sci Total Environ; 2009 Jan; 407(2):899-916. PubMed ID: 19004470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.
    Kumblad L; Kautsky U; Naeslund B
    J Environ Radioact; 2006; 87(1):107-29. PubMed ID: 16406229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.
    Camargo JA; Alonso A
    Environ Int; 2006 Aug; 32(6):831-49. PubMed ID: 16781774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer and behaviour of 137Cs in two Finnish lakes and their catchments.
    Saxén R; Ilus E
    Sci Total Environ; 2008 May; 394(2-3):349-60. PubMed ID: 18313103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 1. Water and sediment.
    Smith JT; Bowes MJ; Denison FH
    Sci Total Environ; 2006 Sep; 368(2-3):485-501. PubMed ID: 16678242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of radionuclides in aquatic ecosystems--default concentration ratios for aquatic biota in the Erica Tool.
    Hosseini A; Thørring H; Brown JE; Saxén R; Ilus E
    J Environ Radioact; 2008 Sep; 99(9):1408-29. PubMed ID: 18343543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concepts and approaches for marine ecosystem research with reference to the tropics.
    Wolff M
    Rev Biol Trop; 2002 Jun; 50(2):395-414. PubMed ID: 12298274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 80(3):357-82. PubMed ID: 15725508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 90Sr in fish: a review of data and possible model approach.
    Kryshev AI
    Sci Total Environ; 2006 Oct; 370(1):182-9. PubMed ID: 16942789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new generic sub-model for radionuclide fixation in large catchments from continuous and single-pulse fallouts, as used in a river model.
    Håkanson L
    J Environ Radioact; 2004; 77(3):247-73. PubMed ID: 15381320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the long-term behaviour of radiocaesium and radiostrontium in two Italian lakes.
    Monte L; Grimani C; Desideri D; Angeli G
    J Environ Radioact; 2005; 80(1):105-23. PubMed ID: 15653190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the transport of radionuclides from land to water.
    Håkanson L
    J Environ Radioact; 2004; 73(3):267-87. PubMed ID: 15050360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction.
    Whicker JJ; Pinder JE; Ibrahim SA; Stone JM; Breshears DD; Baker KN
    Health Phys; 2007 Jul; 93(1):36-46. PubMed ID: 17563491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of physical processes controlling the behaviour of radionuclide contaminants in the aquatic environment: a review of state-of-the-art modelling approaches.
    Monte L; Periañez R; Boyer P; Smith JT; Brittain JE
    J Environ Radioact; 2009 Sep; 100(9):779-84. PubMed ID: 18977560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A weighted bootstrap method for the determination of probability density functions of freshwater distribution coefficients (Kds) of Co, Cs, Sr and I radioisotopes.
    Durrieu G; Ciffroy P; Garnier JM
    Chemosphere; 2006 Nov; 65(8):1308-20. PubMed ID: 16777175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radionuclides from past uranium mining in rivers of Portugal.
    Carvalho FP; Oliveira JM; Lopes I; Batista A
    J Environ Radioact; 2007; 98(3):298-314. PubMed ID: 17624644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Background and anthropogenic radionuclide derived dose rates to freshwater ecosystem: nuclear power plant cooling pond: reference organisms.
    Nedveckaite T; Filistovic V; Marciulioniene D; Prokoptchuk N; Plukiene R; Gudelis A; Remeikis V; Yankovich T; Beresford NA
    J Environ Radioact; 2011 Aug; 102(8):788-95. PubMed ID: 21601320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 2. Uptake by fish.
    Smith JT
    Sci Total Environ; 2006 Sep; 368(2-3):502-18. PubMed ID: 16647745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.