These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9339343)

  • 1. Homologous recombination partly restores the secretion defect of underglycosylated acid phosphatase in yeast.
    Praetorius-Ibba M; Monnet G; Meyhack B; Kielland-Brandt M; Nilsson-Tillgren T; Hinnen A
    Curr Genet; 1997 Sep; 32(3):190-6. PubMed ID: 9339343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene.
    Bajwa W; Rudolph H; Hinnen A
    Yeast; 1987 Mar; 3(1):33-42. PubMed ID: 2849256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast.
    Bajwa W; Meyhack B; Rudolph H; Schweingruber AM; Hinnen A
    Nucleic Acids Res; 1984 Oct; 12(20):7721-39. PubMed ID: 6093051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
    Tait-Kamradt AG; Turner KJ; Kramer RA; Elliott QD; Bostian SJ; Thill GP; Rogers DT; Bostian KA
    Mol Cell Biol; 1986 Jun; 6(6):1855-65. PubMed ID: 3537710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae.
    Bitter GA
    Mol Gen Genet; 1998 Oct; 260(1):120-30. PubMed ID: 9829836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic instability of constitutive acid phosphatase in shochu and sake yeast.
    Takashita H; Kajiwara Y; Shimoda M; Matsuoka M; Ogawa T; Ono K
    J Biosci Bioeng; 2013 Jul; 116(1):71-8. PubMed ID: 23395640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of secretory protein-encoding genes by fusion with PHO5 in Saccharomyces cerevisiae.
    Sidhu RS; Mathewes S; Bollon AP
    Gene; 1991 Oct; 107(1):111-8. PubMed ID: 1743509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast.
    Almer A; Hörz W
    EMBO J; 1986 Oct; 5(10):2681-7. PubMed ID: 3023055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences.
    Meyhack B; Bajwa W; Rudolph H; Hinnen A
    EMBO J; 1982; 1(6):675-80. PubMed ID: 6329697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chromatin of the Saccharomyces cerevisiae centromere shows cell-type specific changes.
    Wilmen A; Hegemann JH
    Chromosoma; 1996 Apr; 104(7):489-503. PubMed ID: 8625737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementation of Saccharomyces cerevisiae acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase.
    Tréton BY; Le Dall MT; Gaillardin CM
    Curr Genet; 1992 Nov; 22(5):345-55. PubMed ID: 1423722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of Mitotic and Meiotic Recombination in the Tandemly-Repeated
    Zhao Y; Dominska M; Petrova A; Bagshaw H; Kokoska RJ; Petes TD
    Genetics; 2017 Jun; 206(2):785-800. PubMed ID: 28381587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Insertion of (dA-dT)n sequences into the regulatory region of the pho5 gene inhibits its expression].
    Sidorova IuM; Kistanova EN; Chernov BK; El'darov MA; Skriabin KG; Nikiforov VG; Mirkin SM
    Mol Biol (Mosk); 1990; 24(1):163-72. PubMed ID: 2190080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vesicular transport of extracellular acid phosphatases in yeast Saccharomyces cerevisiae.
    Blinnikova EI; Mirjuschenko FL; Shabalin YA; Egorov SN
    Biochemistry (Mosc); 2002 Apr; 67(4):485-90. PubMed ID: 11996663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown.
    Andreeva N; Ledova L; Ryasanova L; Kulakovskaya T; Eldarov M
    Folia Microbiol (Praha); 2019 Nov; 64(6):867-873. PubMed ID: 30937822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the signal-sequence processing site of yeast acid phosphatase.
    Monod M; Haguenauer-Tsapis R; Rauseo-Koenig I; Hinnen A
    Eur J Biochem; 1989 Jun; 182(2):213-21. PubMed ID: 2500339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative transcriptional regulation of PH081 expression in Saccharomyces cerevisiae.
    Creasy CL; Shao D; Begman LW
    Gene; 1996 Feb; 168(1):23-9. PubMed ID: 8626060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression, glycosylation and secretion of yeast acid phosphatase in hamster BHK cells.
    Reljic R; Barbaric S; Ries B; Buxton R; Hughes RC
    Glycoconj J; 1992 Feb; 9(1):39-44. PubMed ID: 1392564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of alpha-factor secretion signals by fusing with acid phosphatase of yeast.
    Sidhu RS; Bollon AP
    Gene; 1987; 54(2-3):175-84. PubMed ID: 2820840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.