These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 9339639)
1. Rapid changes in pial arterial diameter and cerebral blood flow caused by ipsilateral carotid artery occlusion in rats. Morita Y; Fukuuchi Y; Koto A; Suzuki N; Isozumi K; Gotoh J; Shimizu T; Takao M; Aoyama M Keio J Med; 1997 Sep; 46(3):120-7. PubMed ID: 9339639 [TBL] [Abstract][Full Text] [Related]
2. Cortical infarct volume is dependent on the ischemic reduction of perifocal cerebral blood flow in a three-vessel intraluminal MCA occlusion/reperfusion model in the rat. Soriano MA; Sanz O; Ferrer I; Planas AM Brain Res; 1997 Feb; 747(2):273-8. PubMed ID: 9046002 [TBL] [Abstract][Full Text] [Related]
3. In vivo effects of dexmedetomidine on laser-Doppler flow and pial arteriolar diameter. Ganjoo P; Farber NE; Hudetz A; Smith JJ; Samso E; Kampine JP; Schmeling WT Anesthesiology; 1998 Feb; 88(2):429-39. PubMed ID: 9477064 [TBL] [Abstract][Full Text] [Related]
4. The effect of acute hypocapnia on local cerebral blood flow during middle cerebral artery occlusion in isoflurane anesthetized rats. Ruta TS; Drummond JC; Cole DJ Anesthesiology; 1993 Jan; 78(1):134-40. PubMed ID: 8424546 [TBL] [Abstract][Full Text] [Related]
5. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Morikawa E; Moskowitz MA; Huang Z; Yoshida T; Irikura K; Dalkara T Stroke; 1994 Feb; 25(2):429-35. PubMed ID: 7508154 [TBL] [Abstract][Full Text] [Related]
6. Stimulation of the nucleus basalis of Meynert increases cortical cerebral blood flow without influencing diameter of the pial artery in rats. Adachi T; Baramidze DG; Sato A Neurosci Lett; 1992 Aug; 143(1-2):173-6. PubMed ID: 1436664 [TBL] [Abstract][Full Text] [Related]
7. Local cerebral blood flow autoregulation following "asymptomatic" cerebral venous occlusion in the rat. Nakase H; Nagata K; Otsuka H; Sakaki T; Kempski O J Neurosurg; 1998 Jul; 89(1):118-24. PubMed ID: 9647182 [TBL] [Abstract][Full Text] [Related]
8. Hemispheric blood flow in the rat after unilateral common carotid occlusion: evolution with time. De Ley G; Nshimyumuremyi JB; Leusen I Stroke; 1985; 16(1):69-73. PubMed ID: 3966269 [TBL] [Abstract][Full Text] [Related]
9. Effects of repeated temporary clipping of the middle cerebral artery on pial arterial diameter, regional cerebral blood flow, and brain structure in cats. Sakaki T; Tsunoda S; Morimoto T; Ishida T; Sasaoka Y Neurosurgery; 1990 Dec; 27(6):914-20. PubMed ID: 2274133 [TBL] [Abstract][Full Text] [Related]
10. Neuropathologic consequences of internal carotid artery occlusion and hemorrhagic hypotension in baboons. Graham DI; Mendelow AD; Tuor U; Fitch W Stroke; 1990 Mar; 21(3):428-34. PubMed ID: 2309267 [TBL] [Abstract][Full Text] [Related]
11. Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Garcia JH; Liu KF; Yoshida Y; Chen S; Lian J Am J Pathol; 1994 Sep; 145(3):728-40. PubMed ID: 8080052 [TBL] [Abstract][Full Text] [Related]
12. The influence of changes in arterial CO2 and blood pressure on the collateral circulation and the regional perfusion pressure in monkeys with occlusion of the middle cerebral artery. Tulleken CA; Abraham J Acta Neurochir (Wien); 1975; 32(3-4):161-73. PubMed ID: 817573 [TBL] [Abstract][Full Text] [Related]
13. Manipulation of cerebrovascular resistance during internal carotid artery occlusion by intraarterial verapamil. Joshi S; Young WL; Pile-Spellman J; Duong DH; Hacein-Bey L; Vang MC; Marshall RS; Ostapkovich N; Jackson T Anesth Analg; 1997 Oct; 85(4):753-9. PubMed ID: 9322451 [TBL] [Abstract][Full Text] [Related]
14. The influence of changes in arterial CO2 and blood pressure on the collateral circulation and the regional perfusion pressure in monkeys with occlusion of the middle cerebral artery. Tulleken CA; Abraham J Sabouraudia; 1976 Mar; 14(1):161-73. PubMed ID: 817401 [TBL] [Abstract][Full Text] [Related]
15. [Microcirculatory changes in the development of the cerebrovascular adaptation]. Kotani A; Song Z; Schaller C; Otsuka H; Nakase H; Sakaki T No To Shinkei; 2001 Feb; 53(2):165-71. PubMed ID: 11268581 [TBL] [Abstract][Full Text] [Related]
16. Consistency of cerebral blood flow and evoked potential alterations with reversible focal ischemia in cats. Matsumiya N; Koehler RC; Traystman RJ Stroke; 1990 Jun; 21(6):908-16. PubMed ID: 2349595 [TBL] [Abstract][Full Text] [Related]
17. Ischemic depolarization during halothane-nitrous oxide and isoflurane-nitrous oxide anesthesia. An examination of cerebral blood flow threshold and times to depolarization. Verhaegen M; Todd MM; Warner DS Anesthesiology; 1994 Oct; 81(4):965-73. PubMed ID: 7943848 [TBL] [Abstract][Full Text] [Related]
18. Cerebrovascular CO2 reactivity after carotid artery occlusion. Clifton GL; Haden HT; Taylor JR; Sobel M J Neurosurg; 1988 Jul; 69(1):24-8. PubMed ID: 3132540 [TBL] [Abstract][Full Text] [Related]
19. Assessment of the contribution of the external carotid artery to brain perfusion in patients with internal carotid artery occlusion. van Laar PJ; van der Grond J; Bremmer JP; Klijn CJ; Hendrikse J Stroke; 2008 Nov; 39(11):3003-8. PubMed ID: 18688004 [TBL] [Abstract][Full Text] [Related]
20. Continuous measurement of cerebral blood flow in anesthetized cats and dogs. Busija DW; Heistad DD; Marcus ML Am J Physiol; 1981 Aug; 241(2):H228-34. PubMed ID: 7270711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]