These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9339812)

  • 1. Persistent decrease of the dopamine-synthesizing enzyme tyrosine hydroxylase in the rhesus monkey retina after chronic lead exposure.
    Kohler K; Lilienthal H; Guenther E; Winneke G; Zrenner E
    Neurotoxicology; 1997; 18(3):623-32. PubMed ID: 9339812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two types of tyrosine hydroxylase-immunoreactive amacrine cell in the rhesus monkey retina.
    Mariani AP; Hokoc JN
    J Comp Neurol; 1988 Oct; 276(1):81-91. PubMed ID: 2903868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of dopaminergic activity, but not tyrosine hydroxylase, is diminished after chronic inorganic lead exposure.
    Lasley SM
    Neurotoxicology; 1992; 13(3):625-35. PubMed ID: 1361980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of tyrosine hydroxylase and downregulation of choline acetyltransferase in lead-exposed PC12 cells: the role of PKC activation.
    Tian X; Sun X; Suszkiw JB
    Toxicol Appl Pharmacol; 2000 Sep; 167(3):246-52. PubMed ID: 10986016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Styrene-induced changes in amacrine retinal cells: an experimental study in the rat.
    Vettori MV; Corradi D; Coccini T; Carta A; Cavazzini S; Manzo L; Mutti A
    Neurotoxicology; 2000 Aug; 21(4):607-14. PubMed ID: 11022868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as determinant of the tyrosine hydroxylase phenotype of dopaminergic cells during retina development.
    Borba JC; Henze IP; Silveira MS; Kubrusly RC; Gardino PF; de Mello MC; HokoƧ JN; de Mello FG
    Brain Res Dev Brain Res; 2005 May; 156(2):193-201. PubMed ID: 16099306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-derived neurotrophic factor modulates the dopaminergic network in the rat retina after axotomy.
    Lee EJ; Song MC; Kim HJ; Lim EJ; Kim IB; Oh SJ; Moon JI; Chun MH
    Cell Tissue Res; 2005 Nov; 322(2):191-9. PubMed ID: 16075211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental delay of astrocytes in hippocampus of rhesus monkeys reflects the effect of pre- and postnatal chronic low level lead exposure.
    Buchheim K; Noack S; Stoltenburg G; Lilienthal H; Winneke G
    Neurotoxicology; 1994; 15(3):665-9. PubMed ID: 7854604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic hypoxemia: effects on developing nitrergic and dopaminergic amacrine cells.
    Roufail E; Harding R; Tester M; Rees S
    Invest Ophthalmol Vis Sci; 1999 Jun; 40(7):1467-76. PubMed ID: 10359329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure.
    Fox DA; Campbell ML; Blocker YS
    Neurotoxicology; 1997; 18(3):645-64. PubMed ID: 9339814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NTP Toxicology and Carcinogenesis Studies of 1-Amino-2,4-Dibromoanthraquinone (CAS No. 81-49-2) in F344/N Rats and B6C3F1 Mice (Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1996 Aug; 383():1-370. PubMed ID: 12692653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine hydroxylase immunoreactivity in the rhesus monkey retina reveals synapses from bipolar cells to dopaminergic amacrine cells.
    Hokoc JN; Mariani AP
    J Neurosci; 1987 Sep; 7(9):2785-93. PubMed ID: 2887643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ageing has a differential effect on nitric oxide synthase-containing and catecholaminergic amacrine cells in the human and rat retina.
    Roufail E; Rees S
    J Comp Neurol; 1997 Dec; 389(2):329-47. PubMed ID: 9416925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succimer and the reduction of tissue lead in juvenile monkeys.
    Smith DR; Woolard D; Luck ML; Laughlin NK
    Toxicol Appl Pharmacol; 2000 Aug; 166(3):230-40. PubMed ID: 10906287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of succimer chelation for reducing brain lead in a primate model of human lead exposure.
    Cremin JD; Luck ML; Laughlin NK; Smith DR
    Toxicol Appl Pharmacol; 1999 Dec; 161(3):283-93. PubMed ID: 10620486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleus accumbens dopaminergic medication of fixed interval schedule-controlled behavior and its modulation by low-level lead exposure.
    Cory-Slechta DA; O'Mara DJ; Brockel BJ
    J Pharmacol Exp Ther; 1998 Aug; 286(2):794-805. PubMed ID: 9694936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice.
    Marsman D
    Toxic Rep Ser; 1995 Apr; 30():1-G5. PubMed ID: 12209194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An immunocytochemical study on specific amacrine cell subpopulations in the rat retina after ischemia.
    Dijk F; Kamphuis W
    Brain Res; 2004 Nov; 1026(2):205-17. PubMed ID: 15488482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDNF increases survival of retinal dopaminergic neurons after prenatal compromise.
    Loeliger MM; Briscoe T; Rees SM
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1282-9. PubMed ID: 18326759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered retinal function and structure after chronic placental insufficiency.
    Bui BV; Rees SM; Loeliger M; Caddy J; Rehn AH; Armitage JA; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):805-12. PubMed ID: 11867602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.