These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9341674)

  • 1. Mutations at the human minisatellite MS32 integrated in yeast occur with high frequency in meiosis and involve complex recombination events.
    Appelgren H; Cederberg H; Rannug U
    Mol Gen Genet; 1997 Sep; 256(1):7-17. PubMed ID: 9341674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meiotic interallelic conversion at the human minisatellite MS32 in yeast triggers recombination in several chromatids.
    Appelgren H; Cederberg H; Rannug U
    Gene; 1999 Oct; 239(1):29-38. PubMed ID: 10571031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of human minisatellite mutation in yeast.
    Cederberg H; Rannug U
    Mutat Res; 2006 Jun; 598(1-2):132-43. PubMed ID: 16581091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of sequence divergence between alleles of the human MS205 minisatellite incorporated into the yeast genome on length-mutation rates and lethal recombination events during meiosis.
    He Q; Cederberg H; Rannug U
    J Mol Biol; 2002 May; 319(2):315-27. PubMed ID: 12051909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrad analysis shows that gene conversion is the major mechanism involved in mutation at the human minisatellite MS1 integrated in Saccharomyces cerevisiae.
    Berg I; Cederberg H; Rannug U
    Genet Res; 2000 Feb; 75(1):1-12. PubMed ID: 10740916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-regulation of inter-allelic exchanges in mutation at human minisatellite MS205 in yeast.
    He Q; Cederberg H; Armour JA; May CA; Rannug U
    Gene; 1999 May; 232(2):143-53. PubMed ID: 10352225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeat instability at human minisatellites arising from meiotic recombination.
    Jeffreys AJ; Neil DL; Neumann R
    EMBO J; 1998 Jul; 17(14):4147-57. PubMed ID: 9670029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human minisatellites, repeat DNA instability and meiotic recombination.
    Jeffreys AJ; Barber R; Bois P; Buard J; Dubrova YE; Grant G; Hollies CR; May CA; Neumann R; Panayi M; Ritchie AE; Shone AC; Signer E; Stead JD; Tamaki K
    Electrophoresis; 1999 Jun; 20(8):1665-75. PubMed ID: 10435430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks.
    Debrauwère H; Buard J; Tessier J; Aubert D; Vergnaud G; Nicolas A
    Nat Genet; 1999 Nov; 23(3):367-71. PubMed ID: 10545956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polychlorinated biphenyls induce meiotic length mutations at the human minisatellite MS32 in yeast.
    Appelgren H; Hedenskog M; Sandström C; Cederberg H; Rannug U
    Environ Mol Mutagen; 1999; 34(4):285-90. PubMed ID: 10618177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative sequence analysis of human minisatellites showing meiotic repeat instability.
    Murray J; Buard J; Neil DL; Yeramian E; Tamaki K; Hollies C; Jeffreys AJ
    Genome Res; 1999 Feb; 9(2):130-6. PubMed ID: 10022977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meiotic recombination and flanking marker exchange at the highly unstable human minisatellite CEB1 (D2S90).
    Buard J; Shone AC; Jeffreys AJ
    Am J Hum Genet; 2000 Aug; 67(2):333-44. PubMed ID: 10869237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot.
    Jeffreys AJ; Murray J; Neumann R
    Mol Cell; 1998 Aug; 2(2):267-73. PubMed ID: 9734365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length and sequence heterozygosity differentially affect HRAS1 minisatellite stability during meiosis in yeast.
    Jauert PA; Kirkpatrick DT
    Genetics; 2005 Jun; 170(2):601-12. PubMed ID: 15834153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of CSM3, MRC1, and TOF1 in minisatellite stability and large loop DNA repair during meiosis in yeast.
    LeClere AR; Yang JK; Kirkpatrick DT
    Fungal Genet Biol; 2013 Jan; 50():33-43. PubMed ID: 23165348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the ALT pathway for telomere maintenance can affect other sequences in the human genome.
    Jeyapalan JN; Varley H; Foxon JL; Pollock RE; Jeffreys AJ; Henson JD; Reddel RR; Royle NJ
    Hum Mol Genet; 2005 Jul; 14(13):1785-94. PubMed ID: 15888482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae.
    Jauert PA; Edmiston SN; Conway K; Kirkpatrick DT
    Mol Cell Biol; 2002 Feb; 22(3):953-64. PubMed ID: 11784870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human minisatellites MS1, MS32, MS205 and CEB1 integrated into the yeast genome exhibit different degrees of mitotic instability but are all stabilised by RAD27.
    Maleki S; Cederberg H; Rannug U
    Curr Genet; 2002 Aug; 41(5):333-41. PubMed ID: 12185499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minisatellite variants generated in yeast meiosis involve DNA removal during gene conversion.
    Bishop AJ; Louis EJ; Borts RH
    Genetics; 2000 Sep; 156(1):7-20. PubMed ID: 10978271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypermutable minisatellites, a human affair?
    Bois PR
    Genomics; 2003 Apr; 81(4):349-55. PubMed ID: 12676558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.