BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 9341791)

  • 1. TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin.
    Spee P; Neefjes J
    Eur J Immunol; 1997 Sep; 27(9):2441-9. PubMed ID: 9341791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein disulfide isomerase is the dominant acceptor for peptides translocated into the endoplasmic reticulum.
    Lammert E; Stevanović S; Brunner J; Rammensee HG; Schild H
    Eur J Immunol; 1997 Jul; 27(7):1685-90. PubMed ID: 9247578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel peptide binding proteins in the endoplasmic reticulum: ERp72, calnexin, and grp170.
    Spee P; Subjeck J; Neefjes J
    Biochemistry; 1999 Aug; 38(32):10559-66. PubMed ID: 10441153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The endoplasmic reticulum-resident stress protein gp96 binds peptides translocated by TAP.
    Lammert E; Arnold D; Nijenhuis M; Momburg F; Hämmerling GJ; Brunner J; Stevanović S; Rammensee HG; Schild H
    Eur J Immunol; 1997 Apr; 27(4):923-7. PubMed ID: 9130645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly.
    Lindquist JA; Jensen ON; Mann M; Hämmerling GJ
    EMBO J; 1998 Apr; 17(8):2186-95. PubMed ID: 9545232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex.
    Hughes EA; Cresswell P
    Curr Biol; 1998 Jun; 8(12):709-12. PubMed ID: 9637923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MHC class I molecules compete in the endoplasmic reticulum for access to transporter associated with antigen processing.
    Knittler MR; Gülow K; Seelig A; Howard JC
    J Immunol; 1998 Dec; 161(11):5967-77. PubMed ID: 9834078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct differences in association of MHC class I with endoplasmic reticulum proteins in wild-type, and beta 2-microglobulin- and TAP-deficient cell lines.
    Paulsson KM; Wang P; Anderson PO; Chen S; Pettersson RF; Li S
    Int Immunol; 2001 Aug; 13(8):1063-73. PubMed ID: 11470776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prominence of beta 2-microglobulin, class I heavy chain conformation, and tapasin in the interactions of class I heavy chain with calreticulin and the transporter associated with antigen processing.
    Solheim JC; Harris MR; Kindle CS; Hansen TH
    J Immunol; 1997 Mar; 158(5):2236-41. PubMed ID: 9036970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum.
    Diedrich G; Bangia N; Pan M; Cresswell P
    J Immunol; 2001 Feb; 166(3):1703-9. PubMed ID: 11160214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of long peptides by transporters associated with antigen processing (TAP).
    Koopmann JO; Post M; Neefjes JJ; Hämmerling GJ; Momburg F
    Eur J Immunol; 1996 Aug; 26(8):1720-8. PubMed ID: 8765012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERcalcistorin/protein-disulfide isomerase acts as a calcium storage protein in the endoplasmic reticulum of a living cell. Comparison with calreticulin and calsequestrin.
    Lucero HA; Lebeche D; Kaminer B
    J Biol Chem; 1998 Apr; 273(16):9857-63. PubMed ID: 9545326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased efficiency of folding and peptide loading of mutant MHC class I molecules.
    Beissbarth T; Sun J; Kavathas PB; Ortmann B
    Eur J Immunol; 2000 Apr; 30(4):1203-13. PubMed ID: 10760810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP.
    Sadasivan B; Lehner PJ; Ortmann B; Spies T; Cresswell P
    Immunity; 1996 Aug; 5(2):103-14. PubMed ID: 8769474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel peptide-binding proteins and peptide transport in normal and TAP-deficient microsomes.
    Marusina K; Reid G; Gabathuler R; Jefferies W; Monaco JJ
    Biochemistry; 1997 Jan; 36(4):856-63. PubMed ID: 9020784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin.
    Oliver JD; Roderick HL; Llewellyn DH; High S
    Mol Biol Cell; 1999 Aug; 10(8):2573-82. PubMed ID: 10436013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAP prefers to transport melanoma antigenic peptides which are longer than the optimal T-cell epitope: evidence for further processing in the endoplasmic reticulum.
    Wang Y; Guttoh DS; Androlewicz MJ
    Melanoma Res; 1998 Aug; 8(4):345-53. PubMed ID: 9764810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major histocompatibility complex class I molecules interact with both subunits of the transporter associated with antigen processing, TAP1 and TAP2.
    Powis SJ
    Eur J Immunol; 1997 Oct; 27(10):2744-7. PubMed ID: 9368636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-regulated peptide transfer from the transporter associated with antigen processing to major histocompatibility complex class I molecules by protein disulfide isomerase.
    Cho K; Cho S; Lee SO; Oh C; Kang K; Ryoo J; Lee S; Kang S; Ahn K
    Antioxid Redox Signal; 2011 Aug; 15(3):621-33. PubMed ID: 21299467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of function of tapasin, a critical major histocompatibility complex class I assembly factor.
    Rizvi SM; Raghavan M
    Traffic; 2010 Mar; 11(3):332-47. PubMed ID: 20070606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.