These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9342375)

  • 21. [Prospects for gene therapy for chronic granulomatous disease with gp91-phox deficiency].
    Nunoi H; Sugimoto Y; Kanegasaki S
    Rinsho Ketsueki; 1998 Feb; 39(2):132. PubMed ID: 9545823
    [No Abstract]   [Full Text] [Related]  

  • 22. NADPH oxidase correction by mRNA transfection of apheresis granulocytes in chronic granulomatous disease.
    De Ravin SS; Brault J; Meis RJ; Li L; Theobald N; Bonifacino AC; Lei H; Liu TQ; Koontz S; Corsino C; Zarakas MA; Desai JV; Clark AB; Choi U; Metzger ME; West K; Highfill SL; Kang E; Kuhns DB; Lionakis MS; Stroncek DF; Dunbar CE; Tisdale JF; Donahue RE; Dahl GA; Malech HL
    Blood Adv; 2020 Dec; 4(23):5976-5987. PubMed ID: 33284949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Clinical and molecular characterization of autosomal recessive chronic granulomatous disease caused by p47-phox deficiency].
    Cornejo De Luigi M; López JA; Navarro S; García D; Patiño PJ
    Rev Med Chil; 2000 May; 128(5):491-8. PubMed ID: 11008352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peripheral blood progenitors as a target for genetic correction of p47phox-deficient chronic granulomatous disease.
    Sekhsaria S; Gallin JI; Linton GF; Mallory RM; Mulligan RC; Malech HL
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7446-50. PubMed ID: 8395049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expansion of genetically corrected neutrophils in chronic granulomatous disease mice by cotransferring a therapeutic gene and a selective amplifier gene.
    Hara T; Kume A; Hanazono Y; Mizukami H; Okada T; Tsurumi H; Moriwaki H; Ueda Y; Hasegawa M; Ozawa K
    Gene Ther; 2004 Sep; 11(18):1370-7. PubMed ID: 15229634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Successful immune reconstitution by means of hematopoietic stem cell transplantation in a Colombian patient with chronic granulomatous disease.
    Rocha YC; López JÁ; Orrego JC; Coll Y; Karduss A; Rosenzweig S; Franco JL
    Biomedica; 2016 Jun; 36(2):204-12. PubMed ID: 27622481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning.
    Huhn RD; Tisdale JF; Agricola B; Metzger ME; Donahue RE; Dunbar CE
    Hum Gene Ther; 1999 Jul; 10(11):1783-90. PubMed ID: 10446918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells.
    Brenner S; Whiting-Theobald N; Kawai T; Linton GF; Rudikoff AG; Choi U; Ryser MF; Murphy PM; Sechler JM; Malech HL
    Stem Cells; 2004; 22(7):1128-33. PubMed ID: 15579633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells.
    Dreyer AK; Hoffmann D; Lachmann N; Ackermann M; Steinemann D; Timm B; Siler U; Reichenbach J; Grez M; Moritz T; Schambach A; Cathomen T
    Biomaterials; 2015 Nov; 69():191-200. PubMed ID: 26295532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic granulomatous disease: Clinical, molecular, and therapeutic aspects.
    Chiriaco M; Salfa I; Di Matteo G; Rossi P; Finocchi A
    Pediatr Allergy Immunol; 2016 May; 27(3):242-53. PubMed ID: 26680691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease.
    De Ravin SS; Reik A; Liu PQ; Li L; Wu X; Su L; Raley C; Theobald N; Choi U; Song AH; Chan A; Pearl JR; Paschon DE; Lee J; Newcombe H; Koontz S; Sweeney C; Shivak DA; Zarember KA; Peshwa MV; Gregory PD; Urnov FD; Malech HL
    Nat Biotechnol; 2016 Apr; 34(4):424-9. PubMed ID: 26950749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ex vivo selection for oncoretrovirally transduced green fluorescent protein-expressing CD34-enriched cells increases short-term engraftment of transduced cells in baboons.
    Kiem HP; Rasko JE; Morris J; Peterson L; Kurre P; Andrews RG
    Hum Gene Ther; 2002 May; 13(8):891-9. PubMed ID: 12031122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retroviral-mediated gene transfer and nonmyeloablative conditioning: studies in a murine X-linked chronic granulomatous disease model.
    Goebel WS; Dinauer MC
    J Pediatr Hematol Oncol; 2002 Dec; 24(9):787-90. PubMed ID: 12468930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signed outside: a surface marker system for transgenic cytoplasmic proteins.
    Wohlgensinger V; Seger R; Ryan MD; Reichenbach J; Siler U
    Gene Ther; 2010 Oct; 17(10):1193-9. PubMed ID: 20445581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress in gene therapy for chronic granulomatous disease.
    Malech HL
    J Infect Dis; 1999 Mar; 179 Suppl 2():S318-25. PubMed ID: 10081502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transplantation of a fetus with paternal Thy-1(+)CD34(+)cells for chronic granulomatous disease.
    Muench MO; Rae J; Bárcena A; Leemhuis T; Farrell J; Humeau L; Maxwell-Wiggins JR; Capper J; Mychaliska GB; Albanese CT; Martin T; Tsukamoto A; Curnutte JT; Harrison MR
    Bone Marrow Transplant; 2001 Feb; 27(4):355-64. PubMed ID: 11313664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study.
    Güngör T; Teira P; Slatter M; Stussi G; Stepensky P; Moshous D; Vermont C; Ahmad I; Shaw PJ; Telles da Cunha JM; Schlegel PG; Hough R; Fasth A; Kentouche K; Gruhn B; Fernandes JF; Lachance S; Bredius R; Resnick IB; Belohradsky BH; Gennery A; Fischer A; Gaspar HB; Schanz U; Seger R; Rentsch K; Veys P; Haddad E; Albert MH; Hassan M;
    Lancet; 2014 Feb; 383(9915):436-48. PubMed ID: 24161820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro molecular reconstitution of the respiratory burst in B lymphoblasts from p47-phox-deficient chronic granulomatous disease.
    Volpp BD; Lin Y
    J Clin Invest; 1993 Jan; 91(1):201-7. PubMed ID: 7678602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein delivery by Pseudomonas type III secretion system: Ex vivo complementation of p67(phox)-deficient chronic granulomatous disease.
    Polack B; Vergnaud S; Paclet MH; Lamotte D; Toussaint B; Morel F
    Biochem Biophys Res Commun; 2000 Sep; 275(3):854-8. PubMed ID: 10973811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progress toward effective gene therapy for chronic granulomatous disease.
    Malech HL; Choi U; Brenner S
    Jpn J Infect Dis; 2004 Oct; 57(5):S27-8. PubMed ID: 15507764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.