These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9342402)

  • 1. The evolution of the conserved ATPase domain (CAD): reconstructing the history of an ancient protein module.
    Swaffield JC; Purugganan MD
    J Mol Evol; 1997 Nov; 45(5):549-63. PubMed ID: 9342402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of proteasomal ATPases.
    Wollenberg K; Swaffield JC
    Mol Biol Evol; 2001 Jun; 18(6):962-74. PubMed ID: 11371584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Jan; 52(Pt 1):7-76. PubMed ID: 11837318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes.
    Zwickl P; Ng D; Woo KM; Klenk HP; Goldberg AL
    J Biol Chem; 1999 Sep; 274(37):26008-14. PubMed ID: 10473546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary history and higher order classification of AAA+ ATPases.
    Iyer LM; Leipe DD; Koonin EV; Aravind L
    J Struct Biol; 2004; 146(1-2):11-31. PubMed ID: 15037234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes.
    Gupta RS; Golding GB
    J Mol Evol; 1993 Dec; 37(6):573-82. PubMed ID: 8114110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of proteasomes.
    Volker C; Lupas AN
    Curr Top Microbiol Immunol; 2002; 268():1-22. PubMed ID: 12083003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A component of the 26S proteasome binds on orphan member of the nuclear hormone receptor superfamily.
    Choi HS; Seol W; Moore DD
    J Steroid Biochem Mol Biol; 1996 Jan; 56(1-6 Spec No):23-30. PubMed ID: 8603043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteasomes and other self-compartmentalizing proteases in prokaryotes.
    De Mot R; Nagy I; Walz J; Baumeister W
    Trends Microbiol; 1999 Feb; 7(2):88-92. PubMed ID: 10081087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus.
    Gupta RS; Singh B
    Curr Biol; 1994 Dec; 4(12):1104-14. PubMed ID: 7704574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal transfer of ATPase genes--the tree of life becomes a net of life.
    Hilario E; Gogarten JP
    Biosystems; 1993; 31(2-3):111-9. PubMed ID: 8155843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic analysis of AAA proteins.
    Frickey T; Lupas AN
    J Struct Biol; 2004; 146(1-2):2-10. PubMed ID: 15037233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and evolution of the L11, L1, L10, and L12 equivalent ribosomal proteins in eubacteria, archaebacteria, and eucaryotes.
    Ramirez C; Shimmin LC; Newton CH; Matheson AT; Dennis PP
    Can J Microbiol; 1989 Jan; 35(1):234-44. PubMed ID: 2497941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification and evolution of P-loop GTPases and related ATPases.
    Leipe DD; Wolf YI; Koonin EV; Aravind L
    J Mol Biol; 2002 Mar; 317(1):41-72. PubMed ID: 11916378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome.
    Gille C; Goede A; Schlöetelburg C; Preissner R; Kloetzel PM; Göbel UB; Frömmel C
    J Mol Biol; 2003 Mar; 326(5):1437-48. PubMed ID: 12595256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAV, an archaebacterial gene with extensive homology to a family of highly conserved eukaryotic ATPases.
    Confalonieri F; Marsault J; Duguet M
    J Mol Biol; 1994 Jan; 235(1):396-401. PubMed ID: 8289263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogenetics of DNA 5mC-methyltransferases.
    Bujnicki JM; Radlinska M
    Acta Microbiol Pol; 1999; 48(1):19-30. PubMed ID: 10467693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene.
    Gupta RS; Singh B
    J Bacteriol; 1992 Jul; 174(14):4594-605. PubMed ID: 1624448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.