These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9342402)

  • 41. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell.
    Kienle N; Kloepper TH; Fasshauer D
    BMC Evol Biol; 2016 Oct; 16(1):215. PubMed ID: 27756227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease.
    Leonhard K; Stiegler A; Neupert W; Langer T
    Nature; 1999 Mar; 398(6725):348-51. PubMed ID: 10192337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of proteasome regulators in eukaryotes.
    Fort P; Kajava AV; Delsuc F; Coux O
    Genome Biol Evol; 2015 May; 7(5):1363-79. PubMed ID: 25943340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.
    Cotton JA; McInerney JO
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17252-5. PubMed ID: 20852068
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps.
    Møller AB; Asp T; Holm PB; Palmgren MG
    Mol Phylogenet Evol; 2008 Feb; 46(2):619-34. PubMed ID: 18155930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A self-compartmentalizing protease in Rhodococcus: the 20S proteasome.
    De Mot R; Nagy I; Baumeister W
    Antonie Van Leeuwenhoek; 1998; 74(1-3):83-7. PubMed ID: 10068791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteasome-related HslU and HslV genes typical of eubacteria are widespread in eukaryotes.
    Ruiz-González MX; Marín I
    J Mol Evol; 2006 Oct; 63(4):504-12. PubMed ID: 17021930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains.
    Ye Y; Meyer HH; Rapoport TA
    J Cell Biol; 2003 Jul; 162(1):71-84. PubMed ID: 12847084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Archaebacterial genomes: eubacterial form and eukaryotic content.
    Keeling PJ; Charlebois RL; Doolittle WF
    Curr Opin Genet Dev; 1994 Dec; 4(6):816-22. PubMed ID: 7888750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A ribosomal protein that is immunologically conserved in archaebacteria, eubacteria and eukaryotes.
    Schmid G; Strobel O; Stöffler-Meilicke M; Stöffler G; Böck A
    FEBS Lett; 1984 Nov; 177(2):189-94. PubMed ID: 6209167
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria.
    Zillig W; Klenk HP; Palm P; Pühler G; Gropp F; Garrett RA; Leffers H
    Can J Microbiol; 1989 Jan; 35(1):73-80. PubMed ID: 2541879
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cytoplasmic presenilin aggregates in proteasome inhibitor-treated cells.
    Ingano LA; Lentini KM; Kovacs I; Tanzi RE; Kovacs DM
    Ann N Y Acad Sci; 2000; 920():259-60. PubMed ID: 11193161
    [No Abstract]   [Full Text] [Related]  

  • 53. Evolutionary origins of Hsp90 chaperones and a deep paralogy in their bacterial ancestors.
    Stechmann A; Cavalier-Smith T
    J Eukaryot Microbiol; 2004; 51(3):364-73. PubMed ID: 15218707
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Proteasomes. Complex proteases lead to a new understanding of cellular regulation through proteolysis].
    Hilt W; Wolf DH
    Naturwissenschaften; 1995 Jun; 82(6):257-68. PubMed ID: 7643904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolution of substrate specificities in the P-type ATPase superfamily.
    Axelsen KB; Palmgren MG
    J Mol Evol; 1998 Jan; 46(1):84-101. PubMed ID: 9419228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AAA+ proteins and substrate recognition, it all depends on their partner in crime.
    Dougan DA; Mogk A; Zeth K; Turgay K; Bukau B
    FEBS Lett; 2002 Oct; 529(1):6-10. PubMed ID: 12354604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms.
    Gupta RS
    Mol Microbiol; 1998 Aug; 29(3):695-707. PubMed ID: 9723910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.
    Brown JR; Doolittle WF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2441-5. PubMed ID: 7708661
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes.
    Striebel F; Kress W; Weber-Ban E
    Curr Opin Struct Biol; 2009 Apr; 19(2):209-17. PubMed ID: 19362814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The rooting of the universal tree of life is not reliable.
    Philippe H; Forterre P
    J Mol Evol; 1999 Oct; 49(4):509-23. PubMed ID: 10486008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.