These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 934275)
1. Direct localisation of beta-adrenoceptor sites in rat cerebellum by a new fluorescent analogue of propranolol. Melamed E; Lahav M; Atlas D Nature; 1976 Jun; 261(5559):420-2. PubMed ID: 934275 [No Abstract] [Full Text] [Related]
2. A fluorescent analogue of propranolol does not label beta adrenoceptor sites. Barnes P; Koppel H; Lewis P; Hutson C; Blair I; Dollery C Brain Res; 1980 Jan; 181(1):209-13. PubMed ID: 6243223 [No Abstract] [Full Text] [Related]
3. Direct evidence for beta-adrenoreceptors on the Purkinje cells of mouse cerebellum. Atlas D; Teichberg VI; Changeux JP Brain Res; 1977 Jun; 128(3):532-6. PubMed ID: 18258 [No Abstract] [Full Text] [Related]
4. Does fluorescent analogue of propranolol, 9-amino-acridine-propranolol, binding sites really show the beta-adrenoreceptors? Murakami E; Shiosaka S; Tohyama M Cell Mol Biol Incl Cyto Enzymol; 1981; 27(2-3):133-7. PubMed ID: 6271398 [No Abstract] [Full Text] [Related]
5. Direct mapping of beta-adrenergic receptors in the rat central nervous system by a novel fluorescent beta-blocker. Atlas D; Melamed E Brain Res; 1978 Jul; 150(2):377-85. PubMed ID: 209850 [TBL] [Abstract][Full Text] [Related]
6. Direct immunohistochemical detection of binding sites for beta-blocker within rat cerebellum. Amenta F; Cavallotti C; De Rossi M; Ferrante F Neurosci Lett; 1981 Jun; 24(1):59-63. PubMed ID: 6167918 [No Abstract] [Full Text] [Related]
7. Differential labelling of alpha and beta-noradrenergic receptors in calf cerebellum membranes with 3H-adrenaline. U'Prichard DC; Synder SH Nature; 1977 Nov; 270(5634):261-3. PubMed ID: 201857 [No Abstract] [Full Text] [Related]
8. Fluorescence histochemical study of the localisation and distribution of beta-adrenergic receptor sites in the spinal cord and cerebellum of the chicken. Bondok AA; Botros KG; el-Mohandes EA J Anat; 1988 Oct; 160():167-74. PubMed ID: 2855328 [TBL] [Abstract][Full Text] [Related]
9. beta-Adrenergic receptors in rat kidney: direct localization by a fluorescent beta-blocker. Atlas D; Melamed E; Lahav M Lab Invest; 1977 May; 36(5):465-8. PubMed ID: 17032 [TBL] [Abstract][Full Text] [Related]
10. RNA in the cerebellum of the cat during postnatal development and the effect of specific physiologic stimulation. Vraa-Jensen J Acta Neurol Scand Suppl; 1972; 51():269-70. PubMed ID: 4514350 [No Abstract] [Full Text] [Related]
11. Histochemical labeling of beta-adrenergic receptors in the mouse central nervous system by 9-amino-acridin propranolol. Melamed E; Luhar M; Atlas D Neurology; 1978 Aug; 28(8):850-3. PubMed ID: 210424 [TBL] [Abstract][Full Text] [Related]
12. Immunohistological localization of ganglioside in rat cerebellum. Laev H; Rapport MM; Mahadik SP; Silverman AJ Brain Res; 1978 Nov; 157(1):136-41. PubMed ID: 359105 [No Abstract] [Full Text] [Related]
13. Ontogeny of visinin-like immunoreactive structures in the rat cerebellum and vestibular nuclei: an immunohistochemical analysis. Yoshida S; Kiyama H; Tohyama M; Hatakenaka S; Miki N Brain Res; 1985 Oct; 354(2):247-53. PubMed ID: 3902152 [TBL] [Abstract][Full Text] [Related]
14. Localization of beta receptors in the anterior segment of the rat eye by a fluorescent analogue of propranolol. Lahav M; Melamed E; Dafna Z; Atlas D Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):645-51. PubMed ID: 27468 [TBL] [Abstract][Full Text] [Related]
15. Selective increases in the density of cerebellar beta-1-adrenergic receptors. Wolfe BB; Minneman KP; Molinoff PB Brain Res; 1982 Feb; 234(2):474-9. PubMed ID: 6277437 [TBL] [Abstract][Full Text] [Related]
16. Visualization of beta-adrenergic receptor sites with fluorescent beta-adrenergic blocker probes--or autofluorescent granules? Hess A Brain Res; 1979 Jan; 160(3):533-8. PubMed ID: 217483 [No Abstract] [Full Text] [Related]
17. GABA release by basket cells onto Purkinje cells, in rat cerebellar slices, is directly controlled by presynaptic purinergic receptors, modulating Ca2+ influx. Donato R; Rodrigues RJ; Takahashi M; Tsai MC; Soto D; Miyagi K; Villafuertes RG; Cunha RA; Edwards FA Cell Calcium; 2008 Dec; 44(6):521-32. PubMed ID: 18468677 [TBL] [Abstract][Full Text] [Related]
18. Immunohistochemical study on the distribution of nitrotyrosine and neuronal nitric oxide synthase in aged rat cerebellum. Chung YH; Shin CM; Joo KM; Kim MJ; Cha CI Brain Res; 2002 Oct; 951(2):316-21. PubMed ID: 12270511 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructural localization of gamma-aminobutyric acid receptors in the mammalian central nervous system by means of [3H]muscimol binding. Chan-Palay V; Palay SL Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2977-80. PubMed ID: 208082 [TBL] [Abstract][Full Text] [Related]
20. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study. Marcoli M; Maura G; Cervetto C; Giacomini C; Oliveri D; Candiani S; Pestarino M Neurochem Int; 2006 Dec; 49(7):683-90. PubMed ID: 16904241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]