These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 9342848)
1. Ecological and evolutionary physiology of heat shock proteins and the stress response in Drosophila: complementary insights from genetic engineering and natural variation. Feder ME; Krebs RA EXS; 1997; 83():155-73. PubMed ID: 9342848 [TBL] [Abstract][Full Text] [Related]
2. [Evolution of the response to heat shock in genus Drosophila]. Garbuz DG; Molodtsov VB; Velikodvorskaia VV; Evgen'ev MB; Zatsepina OG Genetika; 2002 Aug; 38(8):1097-109. PubMed ID: 12244694 [TBL] [Abstract][Full Text] [Related]
3. Engineering Candidate Genes in Studies of Adaptation: The Heat-Shock Protein Hsp70 in Drosophila melanogaster. Feder ME Am Nat; 1999 Jul; 154(S1):S55-S66. PubMed ID: 29586709 [TBL] [Abstract][Full Text] [Related]
4. Effect of engineering Hsp70 copy number on Hsp70 expression and tolerance of ecologically relevant heat shock in larvae and pupae of Drosophila melanogaster. Feder ME; Cartaño NV; Milos L; Krebs RA; Lindquist SL J Exp Biol; 1996 Aug; 199(Pt 8):1837-44. PubMed ID: 8708583 [TBL] [Abstract][Full Text] [Related]
5. Inducible and constitutive heat shock gene expression responds to modification of Hsp70 copy number in Drosophila melanogaster but does not compensate for loss of thermotolerance in Hsp70 null flies. Bettencourt BR; Hogan CC; Nimali M; Drohan BW BMC Biol; 2008 Jan; 6():5. PubMed ID: 18211703 [TBL] [Abstract][Full Text] [Related]
6. NATURAL VARIATION IN THE EXPRESSION OF THE HEAT-SHOCK PROTEIN HSP70 IN A POPULATION OF DROSOPHILA MELANOGASTER AND ITS CORRELATION WITH TOLERANCE OF ECOLOGICALLY RELEVANT THERMAL STRESS. Krebs RA; Feder ME Evolution; 1997 Feb; 51(1):173-179. PubMed ID: 28568793 [TBL] [Abstract][Full Text] [Related]
7. Evolution of thermotolerance and the heat-shock response: evidence from inter/intraspecific comparison and interspecific hybridization in the virilis species group of Drosophila. I. Thermal phenotype. Garbuz D; Evgenev MB; Feder ME; Zatsepina OG J Exp Biol; 2003 Jul; 206(Pt 14):2399-408. PubMed ID: 12796457 [TBL] [Abstract][Full Text] [Related]
8. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. Shilova VY; Zatsepina OG; Garbuz DG; Funikov SY; Zelentsova ES; Schostak NG; Kulikov AM; Evgen'ev MB Insect Mol Biol; 2018 Feb; 27(1):61-72. PubMed ID: 28796386 [TBL] [Abstract][Full Text] [Related]
9. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007 [TBL] [Abstract][Full Text] [Related]
10. Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Krebs RA; Feder ME Cell Stress Chaperones; 1997 Mar; 2(1):60-71. PubMed ID: 9250396 [TBL] [Abstract][Full Text] [Related]
11. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. Nguyen AD; Gotelli NJ; Cahan SH BMC Evol Biol; 2016 Jan; 16():15. PubMed ID: 26787420 [TBL] [Abstract][Full Text] [Related]
12. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma. Udaka H; Ueda C; Goto SG J Insect Physiol; 2010 Dec; 56(12):1889-94. PubMed ID: 20713057 [TBL] [Abstract][Full Text] [Related]
13. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster). Štětina T; Koštál V; Korbelová J PLoS One; 2015; 10(6):e0128976. PubMed ID: 26034990 [TBL] [Abstract][Full Text] [Related]
14. Natural variation in Drosophila stressed locomotion meets or exceeds variation caused by hsp70 mutation: analysis of behavior and performance. Bettencourt BR; Drohan BW; Ireland AT; Santhanam M; Smrtic MB; Sullivan EM Behav Genet; 2009 May; 39(3):306-20. PubMed ID: 19242787 [TBL] [Abstract][Full Text] [Related]
15. Basal hsp70 expression levels do not explain adaptive variation of the warm- and cold-climate O Puig Giribets M; Santos M; García Guerreiro MP BMC Evol Biol; 2020 Jan; 20(1):17. PubMed ID: 32005133 [TBL] [Abstract][Full Text] [Related]
16. Evolvability of Hsp70 expression under artificial election for inducible thermotolerance in independent populations of Drosophila melanogaster. Feder ME; Bedford TB; Albright DR; Michalak P Physiol Biochem Zool; 2002; 75(4):325-34. PubMed ID: 12324888 [TBL] [Abstract][Full Text] [Related]
17. Adult heat tolerance variation in Drosophila melanogaster is not related to Hsp70 expression. Jensen LT; Cockerell FE; Kristensen TN; Rako L; Loeschcke V; McKechnie SW; Hoffmann AA J Exp Zool A Ecol Genet Physiol; 2010 Jan; 313(1):35-44. PubMed ID: 19739085 [TBL] [Abstract][Full Text] [Related]
18. Antarctic marine molluscs do have an HSP70 heat shock response. Clark MS; Fraser KP; Peck LS Cell Stress Chaperones; 2008; 13(1):39-49. PubMed ID: 18347940 [TBL] [Abstract][Full Text] [Related]
19. HERITABILITY OF EXPRESSION OF THE 70KD HEAT-SHOCK PROTEIN IN DROSOPHILA MELANOGASTER AND ITS RELEVANCE TO THE EVOLUTION OF THERMOTOLERANCE. Krebs RA; Feder ME; Lee J Evolution; 1998 Jun; 52(3):841-847. PubMed ID: 28565246 [TBL] [Abstract][Full Text] [Related]
20. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation. Singh MP; Reddy MM; Mathur N; Saxena DK; Chowdhuri DK Toxicol Appl Pharmacol; 2009 Mar; 235(2):226-43. PubMed ID: 19118569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]