These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 9342849)

  • 1. High-temperature stress and the evolution of thermal resistance in Drosophila.
    Loeschcke V; Krebs RA; Dahlgaard J; Michalak P
    EXS; 1997; 83():175-90. PubMed ID: 9342849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster.
    Parkash R; Ranga P; Aggarwal DD
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Sep; 175():46-56. PubMed ID: 24845200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Costs and benefits of cold acclimation in field-released Drosophila.
    Kristensen TN; Hoffmann AA; Overgaard J; Sørensen JG; Hallas R; Loeschcke V
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):216-21. PubMed ID: 18162547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between developmental and adult acclimation have distinct consequences for heat tolerance and heat stress recovery.
    Willot Q; Loos B; Terblanche JS
    J Exp Biol; 2021 Aug; 224(16):. PubMed ID: 34308995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation and selection for increased resistance to thermal stress in Drosophila buzzatii.
    Krebs RA; Loeschcke V
    Genetics; 1996 Feb; 142(2):471-9. PubMed ID: 8852846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species.
    Kristensen TN; Loeschcke V; Bilde T; Hoffmann AA; Sgró C; Noreikienė K; Ondrésik M; Bechsgaard JS
    Evolution; 2011 Nov; 65(11):3195-201. PubMed ID: 22023585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the heat-shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance.
    Sørensen JG; Michalak P; Justesen J; Loeschcke V
    Hereditas; 1999; 131(2):155-64. PubMed ID: 10680297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii.
    Sarup P; Loeschcke V
    J Evol Biol; 2010 May; 23(5):957-65. PubMed ID: 20298441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of inbreeding in three life stages of Drosophila buzzatii after embryos were exposed to a high temperature stress.
    Dahlgaard J; Loeschcke V
    Heredity (Edinb); 1997 Apr; 78 ( Pt 4)():410-6. PubMed ID: 9134706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold tolerance and metabolic rate increased by cold acclimation in Drosophila albomicans from natural populations.
    Isobe K; Takahashi A; Tamura K
    Genes Genet Syst; 2013; 88(5):289-300. PubMed ID: 24694392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold acclimation triggers major transcriptional changes in Drosophila suzukii.
    Enriquez T; Colinet H
    BMC Genomics; 2019 May; 20(1):413. PubMed ID: 31117947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster.
    Camus MF; Wolff JN; Sgrò CM; Dowling DK
    Mol Biol Evol; 2017 Oct; 34(10):2600-2612. PubMed ID: 28637217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flies who cannot take the heat: genome-wide gene expression analysis of temperature-sensitive lethality in an inbred line of Drosophila melanogaster.
    Vermeulen CJ; Sørensen P; Gagalova KK; Loeschcke V
    J Evol Biol; 2014 Oct; 27(10):2152-62. PubMed ID: 25233925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in
    Kellermann V; van Heerwaarden B; Sgrò CM
    Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.