BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9342855)

  • 21. Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior.
    Park JH; Schroeder AJ; Helfrich-Förster C; Jackson FR; Ewer J
    Development; 2003 Jun; 130(12):2645-56. PubMed ID: 12736209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The EGPs: the eclosion hormone and cyclic GMP-regulated phosphoproteins. I. Appearance and partial characterization in the CNS of Manduca sexta.
    Morton DB; Truman JW
    J Neurosci; 1988 Apr; 8(4):1326-37. PubMed ID: 2833582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Central peptidergic ensembles associated with organization of an innate behavior.
    Kim YJ; Zitnan D; Cho KH; Schooley DA; Mizoguchi A; Adams ME
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14211-6. PubMed ID: 16968777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles.
    Kim YJ; Zitnan D; Galizia CG; Cho KH; Adams ME
    Curr Biol; 2006 Jul; 16(14):1395-407. PubMed ID: 16860738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental attenuation of the pre-ecdysis motor pattern in the tobacco hornworm, Manduca sexta.
    Miles CI; Weeks JC
    J Comp Physiol A; 1991 Feb; 168(2):179-90. PubMed ID: 1669740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steroid regulation of the peptide-mediated increase in cyclic GMP in the nervous system of the hawkmoth, Manduca sexta.
    Morton DB; Truman JW
    J Comp Physiol A; 1985 Oct; 157(4):423-32. PubMed ID: 2426446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage-dependent ionic currents in the ventromedial eclosion hormone neurons of Manduca sexta.
    Hewes RS
    J Exp Biol; 1999 Sep; 202(Pt 17):2371-83. PubMed ID: 10441088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organization of the larval pre-ecdysis motor pattern in the tobacco hornworm, Manduca sexta.
    Novicki A; Weeks JC
    J Comp Physiol A; 1993 Aug; 173(2):151-62. PubMed ID: 8410740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics and metamorphosis of an identifiable peptidergic neuron in an insect.
    Riddiford LM; Hewes RS; Truman JW
    J Neurobiol; 1994 Jul; 25(7):819-30. PubMed ID: 8089659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuroendocrine control of larval ecdysis behavior in Drosophila: complex regulation by partially redundant neuropeptides.
    Clark AC; del Campo ML; Ewer J
    J Neurosci; 2004 Apr; 24(17):4283-92. PubMed ID: 15115824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification and analysis of ecdysis in the hornworm, Manduca sexta, using machine vision-based tracking.
    Shimoide A; Kimball I; Gutierrez AA; Lim H; Yoon I; Birmingham JT; Singh R; Fuse M
    Invert Neurosci; 2013 Jun; 13(1):45-55. PubMed ID: 23007685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex steroid-peptide-receptor cascade controls insect ecdysis.
    Zitnan D; Kim YJ; Zitnanová I; Roller L; Adams ME
    Gen Comp Endocrinol; 2007; 153(1-3):88-96. PubMed ID: 17507015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental attenuation of Manduca pre-ecdysis behavior involves neural changes upstream of motoneurons and relay interneurons.
    Novicki A; Weeks JC
    J Comp Physiol A; 2000 Jan; 186(1):69-79. PubMed ID: 10659044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic analysis of Eclosion hormone action during Drosophila larval ecdysis.
    Krüger E; Mena W; Lahr EC; Johnson EC; Ewer J
    Development; 2015 Dec; 142(24):4279-87. PubMed ID: 26395475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual ecdysteroid action on the epitracheal glands and central nervous system preceding ecdysis of Manduca sexta.
    Zitnanová I; Adams ME; Zitnan D
    J Exp Biol; 2001 Oct; 204(Pt 20):3483-95. PubMed ID: 11707498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of ecdysis-triggering hormone in the silkworm Bombyx mori.
    Adams ME; Zitnan D
    Biochem Biophys Res Commun; 1997 Jan; 230(1):188-91. PubMed ID: 9020043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate phosphoprotein availability regulates eclosion hormone sensitivity in an insect CNS.
    Morton DB; Truman JW
    Nature; 1986 Sep 18-24; 323(6085):264-7. PubMed ID: 3020427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of insect ecdysis by a positive-feedback endocrine system: roles of eclosion hormone and ecdysis triggering hormone.
    Ewer J; Gammie SC; Truman JW
    J Exp Biol; 1997 Mar; 200(Pt 5):869-81. PubMed ID: 9100362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A peritracheal neuropeptide system in insects: release of myomodulin-like peptides at ecdysis.
    O'Brien MA; Taghert PH
    J Exp Biol; 1998 Jan; 201(Pt 2):193-209. PubMed ID: 9405303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metamorphic control of cyclic guanosine monophosphate expression in the nervous system of the tobacco hornworm, Manduca sexta.
    Schachtner J; Klaassen L; Truman JW
    J Comp Neurol; 1998 Jun; 396(2):238-52. PubMed ID: 9634145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.